Electrocatalytic deiodination of methyl iodide on a copper electrode

  • Guangtuan HuangEmail author
  • Li Huang
  • Liyuan Dong


Methyl iodide (CH3I) was electrochemically degraded by using copper sheet as cathode and graphite sheet as anode in a two-compartment cell. The effects of key parameters on the degradation of CH3I, including tetraalkylammonium salts, current density, initial pH, and electrolyte concentration, were investigated. The results showed that 89% of CH3I can be removed under the optimized conditions of 0.05% tetrabutylammonium chloride (TBAC), current density of 3 mA cm−2, reaction temperature of 20 °C, initial pH of 4.5, and electrolyte of 0.5 M Na2SO4. Cyclic voltammetry was applied to investigate and preliminarily elucidate the electrochemical degradation mechanism. The major pathway for CH3I degradation is reductive deiodination. Dissociative electron transfer to CH3I led to carbon–iodine bond reductive cleavage, and the reactive hydrogen atom produced during electrolysis could promote the reductive process. CH4 and I were the main products. This study suggests that electrochemical reduction may be a promising option for treatment of radioactive CH3I from nuclear power plants.


Methyl iodide Electrochemical reduction Copper cathode Electrocatalysis 



The authors sincerely appreciate the help of the analysts from Center of Analysis and Test, Laboratory for Resource and Environmental Education, and School of Chemical Engineering in East China University of Science and Technology.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    F. Kepák, J. Radioanal. Nucl. Chem. 142(1), 215 (1990)CrossRefGoogle Scholar
  2. 2.
    K.T. Buä, S. Chibani, J.F. Paul, L. Cantrel, M. Badawi, Phys. Chem. Chem. Phys. 19(40), 27530 (2017)CrossRefGoogle Scholar
  3. 3.
    L.H. Aung, J.G. Leesch, J.F. Jenner, E.E. Grafton-Cardwell, Ann. Appl. Biol. 139(1), 93 (2001)CrossRefGoogle Scholar
  4. 4.
    R. Xuan, D.J. Ashworth, L. Wu, S.R. Yates, Environ. Sci. Technol. 47(22), 13047 (2013)CrossRefGoogle Scholar
  5. 5.
    H.M. Bolt, B. Gansewendt, Crit. Rev. Toxicol. 23(3), 237 (1993)CrossRefGoogle Scholar
  6. 6.
    A.A. Isse, S. Gottardello, C. Durante, A. Gennaro, Phys. Chem. Chem. Phys. 10(17), 2409 (2008)CrossRefGoogle Scholar
  7. 7.
    N.C. Martins, M.F.C. Guedes, R. Wanke, A.J. Pombeiro, Dalton Trans. 24(24), 4772 (2009)CrossRefGoogle Scholar
  8. 8.
    W. Xu, T. Gao, R. Zhou, L. Ma, Front. Environ. Sci. Eng. China 1(2), 207 (2005)CrossRefGoogle Scholar
  9. 9.
    M. Fedurco, C.J. Sartoretti, J. Augustynski, Langmuir 17(8), 2380 (2001)CrossRefGoogle Scholar
  10. 10.
    S. Patai, Z. Rappoport, The Chemistry of Functional Groups, Supplement D2: The Chemistry of Halides, Pseudo-Halides and Azides, Parts 1 and 2 (Wiley, University of Reading, 2001)Google Scholar
  11. 11.
    R.B. Yamasaki, M. Tarle, J. Casanova, J. Org. Chem. 44(25), 4519 (1979)CrossRefGoogle Scholar
  12. 12.
    C. Bellomunno, D. Bonanomi, L. Falciola, M. Longhi, P.R. Mussini, L.M. Doubova, Electrochim. Acta 50(11), 2331 (2005)CrossRefGoogle Scholar
  13. 13.
    J. Simonet, Electrochem. Commun. 7(1), 74 (2005)CrossRefGoogle Scholar
  14. 14.
    Y. Feng, W. Liu, Z. Bai, Acta Sci. Circumstantiae 37(11), 4085 (2017). (in Chinese) Google Scholar
  15. 15.
    A.A. Isse, S. Gottardello, C. Maccato, A. Gennaro, Electrochem. Commun. 8(11), 1707 (2006)CrossRefGoogle Scholar
  16. 16.
    C.S. Criddle, P.L. Mccarty, Environ. Sci. Technol. 25(5), 973 (2002)CrossRefGoogle Scholar
  17. 17.
    A.P. Tomilov, Russ. J. Gen. Chem. 71(7), 1099 (2001)CrossRefGoogle Scholar
  18. 18.
    C.P. Andrieux, J.M. Saveant, K.B. Su, J. Phys. Chem. 90(16), 3815 (1986)CrossRefGoogle Scholar
  19. 19.
    J.M. Savéant, Adv. Phys. Org. Chem. 35(9), 117 (2000)Google Scholar
  20. 20.
    I. Pri-Bar, O. Buchman, J. Org. Chem. 51(5), 734 (1986)CrossRefGoogle Scholar
  21. 21.
    M. Katz, Organic Chemistry, 2nd edn. (Prentice-Hall, New Jersey, 1998)Google Scholar
  22. 22.
    C.M. González-García, J.F. González, S. Román, Fuel Process. Technol. 92(2), 247 (2011)CrossRefGoogle Scholar
  23. 23.
    H. Chun, J. Kang, B. Han, Phys. Chem. Chem. Phys. 18(47), 32050 (2016)CrossRefGoogle Scholar
  24. 24.
    A. Motonari, E. Wataru, H. Toshiharu, J. Nucl. Energy Sci. Technol. 14(5), 370 (2012)Google Scholar
  25. 25.
    S.M. Liu, C.E. Kuo, T.B. Hsu, Chemosphere 32(7), 1287 (1996)CrossRefGoogle Scholar
  26. 26.
    I.F. Cheng, Q. Fernando, N. Korte, Environ. Sci. Technol. 31(4), 1074 (1997)CrossRefGoogle Scholar
  27. 27.
    C. Durante, A.A. Isse, G. Sandonà, A. Gennaro, Appl. Catal. B 88(3), 479 (2009)CrossRefGoogle Scholar
  28. 28.
    S. Azizian, F. Gobal, Langmuir 17(3), 583 (2001)CrossRefGoogle Scholar
  29. 29.
    H. Cheng, K. Scott, P.A. Christensen, J. Appl. Electrochem. 33(10), 893 (2003)CrossRefGoogle Scholar
  30. 30.
    K. Zhu, S.A. Baig, J. Xu, T. Sheng, X. Xu, Electrochim. Acta 69(5), 389 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations