Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 6, pp 3617–3631 | Cite as

Green synthesis of silver nanoparticles using Piper longum catkin extract irradiated by sunlight: antibacterial and catalytic activity

  • M. Jayapriya
  • D. Dhanasekaran
  • M. ArulmozhiEmail author
  • E. Nandhakumar
  • N. Senthilkumar
  • K. Sureshkumar
Article
  • 53 Downloads

Abstract

In this study, rapid and cost-effective biosynthesis of silver nanoparticles (AgNPs) was synthesized by using Piper longum (P. longum) catkin extract. The bioreduction of AgNPs was initially confirmed by using UV–visible spectroscopy which exhibits characteristic absorption peak at 450 nm in 120 s when exposed to sunlight. The phytoconstituents responsible for the reduction of AgNO3 to Ag NPs were examined using Fourier transform infrared spectroscopy. The crystalline nature of Ag NPs was confirmed using the X-ray diffraction pattern. Morphological studies confirmed the synthesized Ag NPs were monodispersed and spherical in shape with the size ranging from 15 to 40 nm. The zeta potential analysis of the synthesized AgNPs exhibit negative value (− 24.3 mV), which indicates higher stability. Further, the proficiency of the synthesized AgNPs was evaluated against mastitis-causing bacteria. Hence, the Ag NPs showed the maximum zone of inhibition against Staphylococcus aureus (12.45 mm), Pseudomonas aeruginosa (12.34 mm), and Bacillus subtilis (9.75 mm). In addition, the catalytic efficiency of Ag NPs was investigated for the conversion of methyl orange to hydrazine derivatives, methylene blue to leuco methylene blue, and o-nitrophenol to o-aminophenol in 4, 5 and 3 min, respectively. Hence, this study explores the doctrine of green chemistry for the rapid production of AgNPs that act as a potential candidate to alleviate mastitis-causing bacteria and clear up diverse environmental problems.

Keywords

Green synthesis Silver nanoparticles Catalytic activity Bio-activity 

Notes

References

  1. 1.
    S. Saroj, K. Kumar, N. Pareek, R. Prasad, R.P. Singh, Chemosphere 107, 240 (2014)CrossRefGoogle Scholar
  2. 2.
    J. Feng, C.E. Cerniglia, H. Chen, Front. Biosci. 4, 568 (2012)CrossRefGoogle Scholar
  3. 3.
    S.A. Ong, K. Uchiyama, D. Inadama, Y. Ishida, K. Yamagiwa, Bioresour. Technol. 101(23), 9049 (2010)CrossRefGoogle Scholar
  4. 4.
    G. Eichenbaum, M. Johnson, D. Kirkland, P. O’Neill, S. Stellar, J. Bielawne, R. DeWire, D. Areia, S. Bryant, S. Weiner, D. Desai-Krieger, Regul. Toxicol. Pharmacol. 55, 33 (2009)CrossRefGoogle Scholar
  5. 5.
    M. Jayapriya, M. Arulmozhi, B. Balraj, IET Nanobiotechnol. (2018).  https://doi.org/10.1049/iet-nbt.2018.5136 Google Scholar
  6. 6.
    K.T. Chung, S.E. Stevens, C.E. Cerniglia, Crit. Rev. Microbiol. 18, 175 (1992)CrossRefGoogle Scholar
  7. 7.
    M. Jayapriya, M. Arulmozhi, B. Balraj, Ceram. Int. 44, 13152 (2018)CrossRefGoogle Scholar
  8. 8.
    N. Gupta, H.P. Singh, R.K. Sharma, J. Mol. Catal. A Chem. 335, 248 (2011)CrossRefGoogle Scholar
  9. 9.
    K. Mallick, M. Witcomb, M. Scurrell, Mater. Chem. Phys. 97, 283 (2006)CrossRefGoogle Scholar
  10. 10.
    R.K. Narayanan, S.J. Devaki, Ind. Eng. Chem. Res. 54, 1197 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Bordbar, RSC Adv. 7, 180 (2017)CrossRefGoogle Scholar
  12. 12.
    M.M. Nigra, J.M. Ha, A. Katz, Catal. Sci. Technol. 3, 2976 (2013)CrossRefGoogle Scholar
  13. 13.
    A. Zinchenko, Y. Miwa, L.I. Lopatina, V.G. Sergeyev, S. Murata, A.C.S. Appl, Mater. Interfaces 6, 3226 (2014)CrossRefGoogle Scholar
  14. 14.
    X. Li, G. Li, W. Zang, L. Wang, X. Zhang, Catal. Sci. Technol. 4, 3290 (2014)CrossRefGoogle Scholar
  15. 15.
    J.A. Johnson, J.J. Makis, K.A. Marvin, S.E. Rodenbusch, K.J. Stevenson, J. Phys. Chem. C 117, 22644 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Mishra, B.R. Singh, A. Singh, C. Keswani, A.H. Naqvi, H.B. Singh, PLoS ONE 9, e97881 (2014)CrossRefGoogle Scholar
  17. 17.
    H. Dai, Sci. Bull. 60, 1708 (2015)CrossRefGoogle Scholar
  18. 18.
    J.M. Campelo, D. Luna, R. Luque, J.M. Marinas, A.A. Romero, ChemSusChem 2, 18 (2009)CrossRefGoogle Scholar
  19. 19.
    Z.J. Jiang, C.Y. Liu, L.W. Sun, J. Phys. Chem. B 109, 1730 (2009)CrossRefGoogle Scholar
  20. 20.
    N. Pradhan, A. Pal, T. Pal, Colloids Surf. A Physicochem. Eng. Asp. 196, 247 (2002)CrossRefGoogle Scholar
  21. 21.
    S. Iravani, Green Chem. 13, 2638 (2011)CrossRefGoogle Scholar
  22. 22.
    P. Velmurugan, J.H. Park, S.M. Lee, J.S. Jang, Y.J. Yi, S.S. Han, S.H. Lee, K.M. Cho, M. Cho, B.T. Oh, Carbohydr. Polym. 133, 39 (2015)CrossRefGoogle Scholar
  23. 23.
    K.M.A. El-Nour, A.A. Eftaiha, A. Al-Warthan, R.A. Ammar, Arab. J. Chem. 3, 135 (2010)CrossRefGoogle Scholar
  24. 24.
    R.M. Tripathi, N. Kumar, A. Shrivastav, P. Singh, B.R. Shrivastav, J. Mol. Catal. B Enzym. 96, 75 (2013)CrossRefGoogle Scholar
  25. 25.
    M.M.O. Rashid, K.N. Akhter, J.A. Chowdhury, F. Hossen, M.S. Hussain, M.T. Hossain, BMC Complement. Altern. Med. 17, 336 (2017)CrossRefGoogle Scholar
  26. 26.
    G. Bagherzade, M.M. Tavakoli, M.H. Namaei, Asian Pac. J. Trop. Biomed. 7, 227 (2017)CrossRefGoogle Scholar
  27. 27.
    P.S. Ramesh, T. Kokila, D. Geetha, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 142, 339 (2015)CrossRefGoogle Scholar
  28. 28.
    P.S. Vankar, D. Shukla, Appl. Nanosci. 2, 163 (2012)CrossRefGoogle Scholar
  29. 29.
    S.P. Dubey, M. Lahtinen, M. Sillanpää, Colloids. Surf. A Physicochem. Eng. Asp. 364, 34 (2010)CrossRefGoogle Scholar
  30. 30.
    H. Bar, D.K. Bhui, G.P. Sahoo, P. Sarkar, S. Pyne, A. Misra, Colloids. Surf. A Physicochem. Eng. Asp. 348, 212 (2009)CrossRefGoogle Scholar
  31. 31.
    S. Li, Y. Shen, A. Xie, X. Yu, L. Qiu, L. Zhang, Q. Zhang, Green Chem. 9, 852 (2007)CrossRefGoogle Scholar
  32. 32.
    A. Suganya, K. Murugan, K. Kovendan, P.M. Kumar, J.S. Hwang, Parasitol. Res. 112, 1385 (2013)CrossRefGoogle Scholar
  33. 33.
    V. Bharathi, J. Firdous, N. Muhamad, R. Mona, Natl. J. Physiol. Pharm. Pharmacol. 7, 1364 (2017)Google Scholar
  34. 34.
    M. Gauthami, N. Srinivasan, N.M. Goud, K. Boopalan, K. Thirumurugan, Nanosci. Nanotechnol. Asia 5, 2 (2015)Google Scholar
  35. 35.
    S. Vinay, K. Renuka, V. Palak, C.R. Harisha, P.K. Prajapati, J. Pharm. Sci. Innov. 1, 62 (2012)Google Scholar
  36. 36.
    S.J.P. Jacob, J.S. Finub, A. Narayanan, Colloids Surf. B Biointerfaces 91, 212 (2012)CrossRefGoogle Scholar
  37. 37.
    K. Mallikarjuna, N.J. Sushma, G. Narasimha, L. Manoj, B.D.P. Raju, Arab. J. Chem. 7(6), 1099 (2014)CrossRefGoogle Scholar
  38. 38.
    R.T.V. Vimala, G. Sathishkumar, S. Sivaramakrishnan, Spectrochim. Acta A Mol. Biomol. Spectrosc. 135, 110 (2015)CrossRefGoogle Scholar
  39. 39.
    D. Manikprabhu, J. Cheng, W. Chen, A.K. Sunkara, S.B. Mane, R. Kumar, W.J. Li, J. Photochem. Photobiol. B 158, 202 (2016)CrossRefGoogle Scholar
  40. 40.
    N. Senthilkumar, A. Arulraj, E. Nandhakumar, M. Ganapathy, M. Vimalan, I. Vetha Potheher, J. Mater. Sci. Mater. Electron. 29, 12744 (2018)CrossRefGoogle Scholar
  41. 41.
    A.M. Awwad, N.M. Salem, A.O. Abdeen, Int. J. Ind. Chem. 4, 29 (2013)CrossRefGoogle Scholar
  42. 42.
    S. Gurunathan, J.W. Han, D.N. Kwon, J.H. Kim, Nanoscale Res. Lett. 9, 373 (2014)CrossRefGoogle Scholar
  43. 43.
    K. Jadhav, S. Deore, D. Dhamecha, S. Jagwani, S. Jalalpure, R. Bohara, ACS Biomater. Sci. Eng. 4, 892 (2018)CrossRefGoogle Scholar
  44. 44.
    N. Senthilkumar, V. Aravindhan, K. Ruckmani, I. Vetha Potheher, Mater. Res. Express 5, 055032 (2018)CrossRefGoogle Scholar
  45. 45.
    N. Senthilkumar, E. Nandha Kumar, P. Priya, D. Soni, M. Vimalan, I. Vetha Potheher, New J. Chem. 41, 10347 (2017)CrossRefGoogle Scholar
  46. 46.
    N. Senthilkumar, M. Ganapathy, A. Arulraj, M. Meena, M. Vimalan, I. Vetha Potheher, J. Alloys Compd. 750, 171 (2018)CrossRefGoogle Scholar
  47. 47.
    A. Manke, L. Wang, Y. Rojanasakul, Biomed. Res. Int. 2013, 1 (2013)CrossRefGoogle Scholar
  48. 48.
    J. Saha, A. Begum, A. Mukherjee, S. Kumar, Sustain. Environ. Res. 27, 245 (2017)CrossRefGoogle Scholar
  49. 49.
    K. Jyoti, A. Singh, J. Genet. Eng. Biotechnol. 14, 311 (2016)CrossRefGoogle Scholar
  50. 50.
    Y. Junejo, A. Baykal, J. Inorg. Organomet. Polym Mater. 24, 401 (2014)CrossRefGoogle Scholar
  51. 51.
    T. Ji, L. Chen, M. Schmitz, F.S. Bao, J. Zhu, Green Chem. 17, 2515 (2015)CrossRefGoogle Scholar
  52. 52.
    S. Joseph, B. Mathew, J. Mol. Liq. 204, 184 (2015)CrossRefGoogle Scholar
  53. 53.
    V.K. Vidhu, D. Philip, Micron 56, 54 (2014)CrossRefGoogle Scholar
  54. 54.
    K.B.A. Ahmed, R. Senthilnathan, S. Megarajan, V. Anbazhagan, J. Photochem. Photobiol. B 151, 39 (2015)CrossRefGoogle Scholar
  55. 55.
    X. Wei, M. Luo, W. Li, L. Yang, X. Liang, L. Xu, H. Liu, Bioresour. Technol. 103, 273 (2012)CrossRefGoogle Scholar
  56. 56.
    V. Kumar, D. Bano, S. Mohan, D.K. Singh, S.H. Hasan, Mater. Lett. 181, 371 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Petrochemical EngineeringAnna University, Bharathidasan Institute of Technology (BIT) CampusTiruchirappalliIndia
  2. 2.Department of MicrobiologyBharathidasan UniversityTiruchirappalliIndia
  3. 3.Department of Mechanical EngineeringSri Ramakrishna Engineering CollegeCoimbatoreIndia
  4. 4.Department of Electronics and Communication EngineeringAriyalur Engineering CollegeAriyalurIndia
  5. 5.Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneAustralia

Personalised recommendations