Research on Chemical Intermediates

, Volume 45, Issue 5, pp 2981–2997 | Cite as

Catalyst-free green synthesis of tetrahydro-benzo[b]pyrans in magnetized water: experimental aspects and molecular dynamics simulation

  • Mohammad BakheradEmail author
  • Fatemeh MoosaviEmail author
  • Ali Keivanloo
  • Rahele Doosti
  • Elmira Moradian
  • Mahsa Armaghan


In this work, magnetized water is applied as a green-promoting medium for the catalyst-free, one-pot, practical, efficient, and environmentally benign multi-component synthesis of tetrahydrobenzo[b]pyrans. Some tetrahydrobenzo[b]pyran derivatives are synthesized by a three-component reaction of an aldehyde, malononitrile, and 1,3-cyclohexanedione or 5,5-dimethyl-1,3-cyclohexanedione at room temperature. This method offers the advantages of short reaction time, low cost, quantitative yield, simple work-up, and no need for an organic solvent. It is thus enviro-economic with no dangerous wastes produced. The molecular insight on the system shows that magnetized water has a dramatic effect on the strength of the interactions between all organic reagents as well as an increase of a factor of 1.2 in order of the number of hydrogen bonds between water and each organic reagent. In the presence of magnetized water, the reagents are more condensed in the center of the simulation box, showing a more considerable molecular interaction leading to a more viscous system that limits the species movements.


Magnetized water Tetrahydrobenzo[b]pyran Molecular dynamics simulation Pair correlation Hydrogen bond 



We gratefully acknowledge the financial support of the Research Council of the Shahrood University of Technology.


  1. 1.
    D. Lu, Y. Li, Y. Gong, J. Org. Chem. 75, 6900 (2010)CrossRefGoogle Scholar
  2. 2.
    D.J. Maloney, S.M. Hecht, Org. Lett. 7, 4297 (2005)CrossRefGoogle Scholar
  3. 3.
    Y. Kashiwada, K. Yamazaki, Y. Ikeshiro, T. Yamagishi, T. Fujioka, K. Mihashi, K. Mizuki, L.M. Cosentino, K. Fowke, S.L. Morris-Natschke, Tetrahedron 57, 1559 (2001)CrossRefGoogle Scholar
  4. 4.
    D.J. Triggle, Cell. Mol. Neurobiol. 23, 293 (2003)CrossRefGoogle Scholar
  5. 5.
    H.R. Safaei, M. Shekouhy, S. Rahmanpur, A. Shirinfeshan, Green Chem. 14, 1696 (2012)CrossRefGoogle Scholar
  6. 6.
    J.-C. Xu, W.-M. Li, H. Zheng, Y.-F. Lai, P.-F. Zhang, Tetrahedron 67, 9582 (2011)CrossRefGoogle Scholar
  7. 7.
    O.H. Qareaghaj, S. Mashkouri, M.R. Naimi-Jamal, G. Kaupp, RSC Adv. 4, 48191 (2014)CrossRefGoogle Scholar
  8. 8.
    R.J. Kalbasi, N. Mosaddegh, Catal. Commun. 12, 1231 (2011)CrossRefGoogle Scholar
  9. 9.
    W.-B. Sun, P. Zhang, J. Fan, S.-H. Chen, Z.-H. Zhang, Synth. Commun. 40, 587 (2010)CrossRefGoogle Scholar
  10. 10.
    B.C. Ranu, S. Banerjee, S. Roy, Indian J. Chem. Org. Sect. B 47, 1108 (2008)Google Scholar
  11. 11.
    G. Klokol, S. Krivokolysko, V. Dyachenko, V. Litvinov, Chem. Heterocycl. Compd. 35, 1183 (1999)CrossRefGoogle Scholar
  12. 12.
    A. Khazaei, F. Gholami, V. Khakyzadeh, A.R. Moosavi-Zare, J. Afsar, RSC Adv. 5, 14305 (2015)CrossRefGoogle Scholar
  13. 13.
    A. Patra, T. Mahapatra, J. Chem. Res. 34, 689 (2010)CrossRefGoogle Scholar
  14. 14.
    S. Banerjee, A. Horn, H. Khatri, G. Sereda, Tetrahedron Lett. 52, 1878 (2011)CrossRefGoogle Scholar
  15. 15.
    R. Breslow, Acc. Chem. Res. 37, 471 (2004)CrossRefGoogle Scholar
  16. 16.
    A.I. Nyberg, A. Usano, P.M. Pihko, Synlett. 1891 (2004)Google Scholar
  17. 17.
    H. Torii, M. Nakadai, K. Ishihara, S. Saito, H. Yamamoto, Angew. Chem. 116, 2017 (2004)CrossRefGoogle Scholar
  18. 18.
    Z. Tang, Z.-H. Yang, L.-F. Cun, L.-Z. Gong, A.-Q. Mi, Y.-Z. Jiang, Org. Lett. 6, 2285 (2004)CrossRefGoogle Scholar
  19. 19.
    J. Casas, H. Sundén, A. Córdova, Tetrahedron Lett. 45, 6117 (2004)CrossRefGoogle Scholar
  20. 20.
    S.A. Parsons, B.-L. Wang, S.J. Judd, T. Stephenson, Water Res. 31, 339 (1997)CrossRefGoogle Scholar
  21. 21.
    S. Parsons, S. Judd, T. Stephenson, S. Udol, B. Wang, Process Saf. Environ. Prot. 75, 98 (1997)CrossRefGoogle Scholar
  22. 22.
    K. Higashitani, H. Iseri, K. Okuhara, A. Kage, S. Hatade, J. Colloid Interface Sci. 172, 383 (1995)CrossRefGoogle Scholar
  23. 23.
    K. Higashitani, K. Okuhara, S. Hatade, J. Colloid Interface Sci. 152, 125 (1992)CrossRefGoogle Scholar
  24. 24.
    Y. Wang, J. Babchin, L. Chernyi, R. Chow, R. Sawatzky, Water Res. 31, 346 (1997)CrossRefGoogle Scholar
  25. 25.
    V. Golovleva, G. Dunaevskii, T. Levdikova, Y.S. Sarkisov, Y.I. Tsyganok, Russ. Phys. J. 43, 1009 (2000)CrossRefGoogle Scholar
  26. 26.
    O. Mosin, I. Ignatov, Nanotechnol. Res. Pract. 4, 187 (2014)CrossRefGoogle Scholar
  27. 27.
    O. Mosin, I. Ignatov, Nanotechnol. Res. Pract. 6, 81 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Bakherad, A. Keivanloo, M. Gholizadeh, R. Doosti, M. Javanmardi, Res. Chem. Intermed. 43, 1013 (2017)CrossRefGoogle Scholar
  29. 29.
    M. Bakherad, Z. Moosavi-Tekyeh, A. Keivanloo, M. Gholizadeh, Z. Toozandejani, Res. Chem. Intermed. 44, 373 (2018)CrossRefGoogle Scholar
  30. 30.
    M. Bakherad, R. Doosti, A. Keivanloo, M. Gholizadeh, K. Jadidi, J. Iran. Chem. Soc. 14, 2591 (2017)CrossRefGoogle Scholar
  31. 31.
    M. Bakherad, R. Doosti, A. Keivanloo, M. Gholizadeh, A.H. Amin, Lett. Org. Chem. 14, 510 (2017)CrossRefGoogle Scholar
  32. 32.
    M. Bakherad, F. Moosavi, R. Doosti, A. Keivanloo, M. Gholizadeh, New J. Chem. 42, 4559 (2018)CrossRefGoogle Scholar
  33. 33.
    F. Moosavi, M. Gholizadeh, J. Magn. Magn. Mater. 354, 239 (2014)CrossRefGoogle Scholar
  34. 34.
    H. Rashidi, A. Ahmadpour, M. Gholizadeh, F.F. Bamoharram, F. Moosavi, Adv. Powder Technol. 29, 349 (2018)CrossRefGoogle Scholar
  35. 35.
    G.H. Rounaghi, M. Gholizadeh, F. Moosavi, I. Razavipanah, H. Azizi-Toupkanloo, M.R. Salavati, RSC Adv. 6, 9096 (2016)CrossRefGoogle Scholar
  36. 36.
    A.N. Pour, M. Gholizadeh, M. Housaindokht, F. Moosavi, H. Monhemi, Appl. Phys. A 123, 269 (2017)CrossRefGoogle Scholar
  37. 37.
    M.R. Housaindokht, F. Moosavi, J. Mol. Struct. 1161, 393 (2018)CrossRefGoogle Scholar
  38. 38.
    K.-T. Chang, C.-I. Weng, J. Appl. Phys. 100, 043917 (2006)CrossRefGoogle Scholar
  39. 39.
    J.K. Beattie, C.S. McErlean, C.B. Phippen, Chem. Eur. J. 16, 8972 (2010)CrossRefGoogle Scholar
  40. 40.
    A. Hasaninejad, M. Shekouhy, N. Golzar, A. Zare, M.M. Doroodmand, Appl. Catal. A General 402, 11 (2011)CrossRefGoogle Scholar
  41. 41.
    A. Hasaninejad, N. Golzar, M. Beyrati, A. Zare, M.M. Doroodmand, J. Mol. Catal. A Chem. 372, 137 (2013)CrossRefGoogle Scholar
  42. 42.
    N. Zohreh, S.H. Hosseini, A. Pourjavadi, C. Bennett, RSC Adv. 4, 50047 (2014)CrossRefGoogle Scholar
  43. 43.
    I.A. Azath, P. Puthiaraj, K. Pitchumani, A.C.S. Sustain, Chem. Eng. 1, 174 (2012)Google Scholar
  44. 44.
    J. Davarpanah, A.R. Kiasat, S. Noorizadeh, M. Ghahremani, J. Mol. Catal. A Chem. 376, 78 (2013)CrossRefGoogle Scholar
  45. 45.
    S. Rostamnia, A. Nuri, H. Xin, A. Pourjavadi, S.H. Hosseini, Tetrahedron Lett. 54, 3344 (2013)CrossRefGoogle Scholar
  46. 46.
    S.B. Bandgar, B.P. Bandgar, B.L. Korbad, J.V. Totre, S. Patil, Aust. J. Chem. 60, 305 (2007)CrossRefGoogle Scholar
  47. 47.
    T. Ponpandian, S. Muthusubramanian, Synth. Commun. 44, 868 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of ChemistryShahrood University of TechnologyShahroodIran
  2. 2.Department of ChemistryFerdowsi University of MashhadMashhadIran
  3. 3.Chemistry Department, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations