Skip to main content
Log in

Influence of aging temperature and Mg/Zr molar ratio on transformation of C2H6 to C2H4 over VOx catalyst supported on Mg–Zr nanocomposite

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

To identify active and selective catalysts for oxidative dehydrogenation of ethane in presence of CO2, MgO–ZrO2 supports with varying amounts (0–100 wt%) of ZrO2 were synthesized via a coprecipitation method then impregnated with NH4VO3. In addition, the impact of the aging temperature on the structural properties and catalytic activity was examined. To characterize the prepared catalysts, X-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) spectroscopy, Brunauer–Emmett–Teller (BET) measurements, ultraviolet–visible (UV–Vis) diffuse reflectance spectroscopy (DRS), and Fourier-transform infrared (FTIR) analysis were applied. The results of XRD and EDX analyses confirmed successful synthesis of MgO–ZrO2 nanocomposite. In presence of zirconia, the dispersion of V-species was improved, decreasing the particle size of vanadium oxide and thus promoting the catalytic activity. However, for higher concentration of ZrO2 on the support, agglomeration of particles was observed and the ratio of the tetragonal to monoclinic phase of zirconia decreased. On the other hand, the presence of MgO stabilized the tetragonal phase of zirconia. According to the applied characterization methods and catalytic activity tests, VOx/ZrO2(25)–MgO(75)-A was selected as the most active catalyst, showing C2H4 yield of 60.13 % as well as ethane conversion of 67.14 % at 700 °C. This catalyst remained stable during 10 h on stream at 700 °C, indicating that the presence of a proper amount of zirconia not only increased the activity of the catalyst but also prevented its deactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Luo, J. Wang, T. Wang, Chin. J. Chem. Eng. 26, 6 (2018)

    Article  CAS  Google Scholar 

  2. X.G. Li, Q.F. Lu, M.R. Huang, Small 4, 8 (2008)

    Google Scholar 

  3. X.G. Li, A. Li, M.R. Huang, Chemistry 14, 33 (2008)

    CAS  Google Scholar 

  4. X.G. Li, J. Li, M.R. Huang, Chemistry 15, 26 (2009)

    Google Scholar 

  5. X.-G. Li, A. Li, M.-R. Huang, Y. Liao, Y.-G. Lu, J. Phys. Chem. C 114, 45 (2010)

    Article  CAS  Google Scholar 

  6. X.-G. Li, Y. Liao, M.-R. Huang, V. Strong, R.B. Kaner, Chem. Sci. 4, 5 (2013)

    CAS  Google Scholar 

  7. M.-R. Huang, Y.-B. Ding, X.-G. Li, Y. Liu, K. Xi, C.-L. Gao, R.V. Kumar, ACS Appl. Mater. Interfaces 6, 24 (2014)

    Article  CAS  Google Scholar 

  8. X.G. Li, Y. Kang, M.R. Huang, J. Comb. Chem. 8, 5 (2006)

    CAS  Google Scholar 

  9. M.-R. Huang, H.-J. Lu, X.-G. Li, J. Mater. Chem. 22, 34 (2012)

    CAS  Google Scholar 

  10. C. Oliva, S. Cappelli, I. Rossetti, N. Ballarini, F. Cavani, L. Forni, Chem. Eng. J. 154, 1 (2009)

    Article  CAS  Google Scholar 

  11. Z. Skoufa, E. Heracleous, A.A. Lemonidou, Chem. Eng. Sci. 84, 48 (2012)

    Article  CAS  Google Scholar 

  12. P. Taghavinezhad, M. Haghighi, R. Alizadeh, Microporous Mesoporous Mater. 261, 259 (2018)

    Article  CAS  Google Scholar 

  13. F. Dury, M.A. Centeno, E.M. Gaigneaux, P. Ruiz, Appl. Catal. A Gen. 247, 2 (2003)

    Article  CAS  Google Scholar 

  14. E.V. Kondratenko, J. Pérez-Ramı́rez, Appl. Catal. A Gen. 267, 1 (2004)

    Article  CAS  Google Scholar 

  15. A. Held, J. Kowalska, K. Nowińska, Appl. Catal. B Environ. 64, 3 (2006)

    Article  CAS  Google Scholar 

  16. P. Delir Kheyrollahi Nezhad, M. Haghighi, F. Rahmani, Part. Sci. Technol. 36, 8 (2018)

    Article  CAS  Google Scholar 

  17. F. Rahmani, M. Haghighi, B. Mohammadkhani, Microporous Mesoporous Mater. 242, 34 (2017)

    Article  CAS  Google Scholar 

  18. P. Taghavinezhad, M. Haghighi, R. Alizadeh, Korean J. Chem. Eng. 34, 5 (2017)

    Article  CAS  Google Scholar 

  19. O. Ovsitser, E.V. Kondratenko, Catal. Today 142, 3 (2009)

    Article  CAS  Google Scholar 

  20. X. Li, B. Yan, S. Yao, S. Kattel, J.G. Chen, T. Wang, Appl. Catal. B Environ. 231, 108 (2018)

    Article  CAS  Google Scholar 

  21. V. Ducarme, H.M. Swaan, A. Thaib, GA Martin, in Studies in Surface Science and Catalysis, ed. by M. de Pontes, R.L. Espinoza, C.P. Nicolaides, J.H. Scholtz, M.S. Scurrell (Elsevier, Amsterdam, 1997), p. 361

    Google Scholar 

  22. N.N. Ha, N.D. Huyen, L.M. Cam, Appl. Catal. A Gen. 407, 1 (2011)

    Article  CAS  Google Scholar 

  23. I.V. Mishakov, A.A. Vedyagin, A.F. Bedilo, V.I. Zaikovskii, K.J. Klabunde, Catal. Today 144, 3 (2009)

    Article  CAS  Google Scholar 

  24. M.A. Bañares, I.E. Wachs, J. Raman Spectrosc. 33, 5 (2002)

    Article  CAS  Google Scholar 

  25. R. Gudgila, C.A. Leclerc, Ind. Eng. Chem. Res. 50, 14 (2011)

    Article  CAS  Google Scholar 

  26. S. Wang, K. Murata, T. Hayakawa, S. Hamakawa, K. Suzuki, Catal. Lett. 59, 2 (1999)

    Google Scholar 

  27. S. Chakraborty, S.C. Nayak, G. Deo, Catal. Today 254, 62 (2015)

    Article  CAS  Google Scholar 

  28. M. Ziolek, A. Lewandowska, B. Grzybowska, A. Klisińska, React. Kinetics. Catal. Lett. 80, 2 (2003)

    Google Scholar 

  29. E. Heracleous, A.F. Lee, I.A. Vasalos, A.A. Lemonidou, Catal. Lett. 88, 1 (2003)

    Article  Google Scholar 

  30. A. Qiao, V.N. Kalevaru, J. Radnik, A. Düvel, P. Heitjans, A.S.H. Kumar, P.S.S. Prasad, N. Lingaiah, A. Martin, Ind. Eng. Chem. Res. 53, 49 (2014)

    Article  CAS  Google Scholar 

  31. A. Talati, M. Haghighi, F. Rahmani, RSC Adv. 6, 50 (2016)

    Article  CAS  Google Scholar 

  32. F. Rahmani, M. Haghighi, S. Mahboob, Ultrason. Sonochem. 33, 150 (2016)

    Article  CAS  PubMed  Google Scholar 

  33. E. Asghari, M. Haghighi, F. Rahmani, J. Appl. Res. Chem. 10, 2 (2016)

    Google Scholar 

  34. C. Eisenmenger-Sittner, C. Nöbauer, M. Mozetic, J. Kovač, R. Zaplotnik, Surf. Coat. Technol. 347, 270 (2018)

    Article  CAS  Google Scholar 

  35. W. Harlow, A.C. Lang, B.J. Demaske, S.R. Phillpot, M.L. Taheri, Scr. Mater. 145, 95 (2018)

    Article  CAS  Google Scholar 

  36. W. Yan, Q.-Y. Kouk, S.X. Tan, J. Luo, Y. Liu, J. CO2 Util. 15, 154 (2016)

    Article  CAS  Google Scholar 

  37. K. Morita, K. Hiraga, Y. Sakka, J. Am. Ceram. Soc. 85, 7 (2004)

    Article  Google Scholar 

  38. A. Gedanken, R. Reisfeld, E. Sominski, O. Palchik, Y. Koltypin, G. Panczer, M. Gaft, H. Minti, J. Phys. Chem. B 104, 30 (2000)

    Article  CAS  Google Scholar 

  39. H. Xie, J. Lu, M. Shekhar, J.W. Elam, W.N. Delgass, F.H. Ribeiro, E. Weitz, K.R. Poeppelmeier, ACS Catal. 3, 1 (2013)

    Article  CAS  Google Scholar 

  40. J. Zhang, L Chi, in Encyclopedia of Interfacial Chemistry, ed. by K. Wandelt (Elsevier, Oxford, 2018), p. 1

    Google Scholar 

  41. X. Shi, S. Ji, K. Wang, Catal. Lett. 125, 3 (2008)

    Article  CAS  Google Scholar 

  42. C.P. Kumar, S. Gaab, T.E. Müller, J.A. Lercher, Top. Catal. 50, 1 (2008)

    Article  CAS  Google Scholar 

  43. S. Xia, X. Guo, D. Mao, Z. Shi, G. Wu, G. Lu, RSC Adv. 4, 93 (2014)

    Google Scholar 

  44. M.B. Gawande, S.N. Shelke, P.S. Branco, A. Rathi, R.K. Pandey, Appl. Organomet. Chem. 26, 8 (2012)

    Article  CAS  Google Scholar 

  45. R. Brenier, A. Gagnaire, Thin Solid Films 392, 1 (2001)

    Article  Google Scholar 

  46. L.S. Escandón, D. Niño, E. Díaz, S. Ordóñez, F.V. Díez, Catal. Commun. 9, 13 (2008)

    Article  CAS  Google Scholar 

  47. N. Mimura, M. Okamoto, H. Yamashita, S.T. Oyama, K. Murata, J. Phys. Chem. B 110, 43 (2006)

    Article  CAS  Google Scholar 

  48. A. Khodakov, J. Yang, S. Su, E. Iglesia, A.T. Bell, J. Catal. 177, 2 (1998)

    Article  Google Scholar 

  49. R. Vidal-Michel, K.L. Hohn, J. Catal. 221, 1 (2004)

    Article  CAS  Google Scholar 

  50. L. Zhang, Z. Gao, L. Bao, H. Ma, Int. J. Hydrogen Energy 43, 19 (2018)

    Google Scholar 

  51. W. Li, Z. Zhao, Y. Jiao, G. Wang, Chin. J. Catal. 37, 12 (2016)

    Article  CAS  Google Scholar 

  52. T. Klimova, M.L. Rojas, P. Castillo, R. Cuevas, J. Ramírez, Microporous Mesoporous Mater. 20, 4 (1998)

    Article  Google Scholar 

  53. E. Hong, S.W. Baek, M. Shin, Y.-W. Suh, C.-H. Shin, J. Ind. Eng. Chem. 54, 44 (2017)

    Article  CAS  Google Scholar 

  54. A.M. Abdelghany, H.A. ElBatal, Mater. Des. 89, 568 (2016)

    Article  CAS  Google Scholar 

  55. P. Sadeghpour, M. Haghighi, Adv. Powder Technol. 29, 5 (2018)

    Article  CAS  Google Scholar 

  56. S. Mahzoon, S.M. Nowee, M. Haghighi, Renew. Energy 127, 433 (2018)

    Article  CAS  Google Scholar 

  57. P. Jabbarnezhad, M. Haghighi, P. Taghavinezhad, Fuel Process. Technol. 126, 392 (2014)

    Article  CAS  Google Scholar 

  58. E. Asghari, M. Haghighi, F. Rahmani, J. Mol. Catal. A: Chem. 418–419, 115 (2016)

    Article  CAS  Google Scholar 

  59. G. Mitran, R. Ahmed, E. Iro, S. Hajimirzaee, S. Hodgson, A. Urdă, M. Olea, I.-C. Marcu, Catal. Today 306, 260 (2018)

    Article  CAS  Google Scholar 

  60. R. Bulánek, P. Čičmanec, M. Setnička, Phys. Procedia 44, 195 (2013)

    Article  CAS  Google Scholar 

  61. P. Michorczyk, P. Pietrzyk, J. Ogonowski, Microporous Mesoporous Mater. 161, 56 (2012)

    Article  CAS  Google Scholar 

  62. T. Shishido, K. Shimamura, K. Teramura, T. Tanaka, Catal. Today 185, 1 (2012)

    Article  CAS  Google Scholar 

  63. X. Lin, C.A. Hoel, W.M.H. Sachtler, K.R. Poeppelmeier, E. Weitz, J. Catal. 265, 1 (2009)

    Article  CAS  Google Scholar 

  64. F. Rahmani, M. Haghighi, J. Nat. Gas Sci. Eng. 27, 1684 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Sahand University of Technology and Iran Nanotechnology Initiative Council for their complementary financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Haghighi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghavinezhad, P., Haghighi, M. & Alizadeh, R. Influence of aging temperature and Mg/Zr molar ratio on transformation of C2H6 to C2H4 over VOx catalyst supported on Mg–Zr nanocomposite. Res Chem Intermed 45, 1907–1927 (2019). https://doi.org/10.1007/s11164-018-3709-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3709-1

Keywords

Navigation