Skip to main content

Advertisement

Log in

Graphene oxide-based zirconium oxide nanocomposite for enhanced visible light-driven photocatalytic activity

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In the present investigation, an efficient visible light-active, graphene oxide-based zirconium oxide nanocomposite (GO–ZrO2) has been synthesized by co-precipitation method. The synthesized photocatalyst was characterized by XRD, FTIR, FE-SEM, EDS, TEM, TGA, PL, UV-DRS and BET surface area analysis. The characterization results illustrate the homogeneous dispersion of ZrO2 nanoparticles in the GO–ZrO2 nanocomposite with excellent harmony between GO and ZrO2 nanoparticles. The photocatalytic efficiency of the synthesized GO–ZrO2 nanocomposite was evaluated by photodegradation of hazardous, water-soluble rhodamine B and methylene blue dyes under visible light irradiation. The 90% photocatalytic degradation of rhodamine B dye (with initial conc. 30 mg/L) was observed in 105 min of visible light irradiation, while 99.23% of methylene blue (with initial conc. 100 mg/L) dyes degradation was observed in just 60 min using 25 mg/100 ml dose of GO–ZrO2 nanocomposite as a photocatalyst. The mechanistic investigation using scavengers suggest that the superoxide (O ·−2 ) is the most reactive species involved in the photodegradation of organic dyes. The synthesized photocatalyst GO–ZrO2 nanocomposite also exhibits excellent thermal stability and reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Quintana, A. Altube, E. Garcia-Lecina, S. Surinach, M.D. Baro, J. Sort, E. Pellicer, M. Guerrero, J. Mater. Sci. 52, 13779 (2017)

    Article  CAS  Google Scholar 

  2. S.K. Warkhade, G.S. Gaikwad, S.P. Zodape, U. Pratap, A.V. Maldhure, A.V. Wankhade,  Mater. Sci. Semicond. Process. 63, 18 (2017)

  3. E.S. Agorku, A.C. Pandey, B.B. Mamba, A.K. Mishra, Mater. Today Proc. 2, 3909 (2015)

    Article  Google Scholar 

  4. S. Allahveran, A. Mehrizad, J. Mol. Liq. 225, 339 (2016)

    Article  CAS  Google Scholar 

  5. E.B. Yazdani, A. Mehrizad, J. Mol. Liq. 255, 102 (2018)

    Article  CAS  Google Scholar 

  6. S. Rani, M. Aggarwal, M. Kumar, S. Sharma, D. Kumar, Water Sci. 30, 51 (2016)

    Article  Google Scholar 

  7. D. Liu, S. Deng, A. Maimaiti, B. Wang, J. Huang, Y. Wang, G. Yu, J. Colloid Interface Sci. 511, 277 (2018)

    Article  CAS  PubMed  Google Scholar 

  8. E.S. Agorku, A.T. Kuvarega, B.B. Mamba, A.C. Pandey, A.K. Mishra, J. Rare Earths 33, 498 (2015)

    Article  CAS  Google Scholar 

  9. S.O.B. Oppong, W.W. Anku, S.K. Shukla, P.P. Govender, Res. Chem. Intermed. 43, 481 (2017)

    Article  CAS  Google Scholar 

  10. P. Bakhtkhosh, A. Mehrizad, J. Mol. Liq. 240, 65 (2017)

    Article  CAS  Google Scholar 

  11. A. Mehrizad, P. Gharbani, Photochem. Photobiol. 93(5), 1178 (2017)

    Article  CAS  PubMed  Google Scholar 

  12. F. Ciesielczyk, W. Szczekocka, K. Siwińska-stefańska, A. Piasecki, Open Chem. 15, 7 (2017)

    Article  CAS  Google Scholar 

  13. N. Prabhakarrao, M.R. Chandra, T.S. Rao, J. Alloys Compd. 694, 596 (2017)

    Article  CAS  Google Scholar 

  14. A. Mehrizad, P. Gharbani, J. Water Health 15(6), 955 (2017)

    Article  PubMed  Google Scholar 

  15. K. Gurushantha, K.S. Anantharaju, L. Renuka, S.C. Sharma, RSC Adv. 7, 12690 (2017)

    Article  CAS  Google Scholar 

  16. R. Ali, K. Rao, S. Singh, B. Raj, W. Khan, A.H. Naqvi, J. Environ. Chem. Eng. 2, 199 (2014)

    Article  CAS  Google Scholar 

  17. E. Zong, D. Wei, H. Wan, S. Zheng, Z. Xu, D. Zhu, Chem. Eng. J. 221, 193 (2013)

    Article  CAS  Google Scholar 

  18. J. Zhang, N. Chen, M. Li, P. Su, C. Feng, React. Funct. Polym. 114, 127 (2017)

    Article  CAS  Google Scholar 

  19. H. Teymourian, A. Salimi, S. Firoozi, Electrochim. Acta 143, 196 (2014)

    Article  CAS  Google Scholar 

  20. B.R. Singh, M. Shoeb, W. Khan, A.H. Naqvi, J. Alloys Compd. 651, 598 (2015)

    Article  CAS  Google Scholar 

  21. X. Wang, L. Zhang, H. Lin, Q. Nong, Y. Wu, RSC Adv. 4, 40029 (2014)

    Article  CAS  Google Scholar 

  22. Y. Ke, H. Guo, D. Wang, J. Chen, W. Weng, J. Mater. Res. 29, 2473 (2014)

    Article  CAS  Google Scholar 

  23. F. Lupo, R. Kamalakaran, C. Scheu, N. Grobert, M. Ruhle, Carbon 42, 1995 (2004)

    Article  CAS  Google Scholar 

  24. R. Saada, S. Kellici, T. Heil, D. Morgan, B. Saha, Appl. Catal. B Environ. 168–169, 353 (2015)

    Article  CAS  Google Scholar 

  25. A. Mehrizad, P. Gharbani, Pol. J. Environ. Stud. 23, 2111 (2014)

    Article  CAS  Google Scholar 

  26. P.P.A. Jose, M.S. Kala, N. Kalarikkal, S. Thomas, Res. Chem. Intermed. 44(9), 5597 (2018)

    Article  CAS  Google Scholar 

  27. F. Davar, A. Majedi, A. Abbasi, J. Mater. Sci.: Mater. Electron. 28, 4871 (2017)

    CAS  Google Scholar 

  28. S.M. El-Dafrawy, M. Farag, S.M. Hassan, Res. Chem. Intermed. 43, 6343 (2017)

    Article  CAS  Google Scholar 

  29. S.N. Basahel, M. Mokhtar, E.H. Alsharaeh, T.T. Ali, H.A. Mahmoud, K. Narasimharao, Nanosci. Nanotechnol. Lett. 8, 448 (2016)

    Article  Google Scholar 

  30. H. Mudila, S. Rana, M.G.H. Zaidi, J. Anal. Sci. Technol. 7, 3 (2016)

    Article  CAS  Google Scholar 

  31. M. Mzoughi, W.W. Anku, S.O.B. Oppong, S.K. Shukla, E.S. Agorku, P.P. Govender, Adv. Mater. Lett. 7(11), 100 (2016)

    Google Scholar 

  32. X. Luo, C. Wang, L. Wang, F. Deng, S. Luo, X. Tu, C. Au, Chem. Eng. J. 220, 98 (2013)

    Article  CAS  Google Scholar 

  33. B. Prashanti, T. Damodharam, J. Nanosci. Technol. 3, 256 (2017)

    Google Scholar 

  34. J. Chen, B. Yao, C. Li, G. Shi, Carbon 64, 225 (2013)

    Article  CAS  Google Scholar 

  35. X. Chen, Y. Liu, X. Xia, L. Wang, Appl. Surf. Sci. 407, 470 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the director, VNIT, Nagpur, India, for providing financial assistance. We are also thankful to the Sophisticated Test and Instrumentation Center, Kerala, Cochin University, for providing instrument facility for our research work. We are also thankful to Punjab University, Chandigarh, and SAIF Madras, for providing the instrumental facility. We are also thankful to the Dr. R. S. Gedam, Department of Physics, VNIT, Nagpur,, for providing the instrumental facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul V. Wankhade.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 753 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, R.S., Warkhade, S.K., Kumar, A. et al. Graphene oxide-based zirconium oxide nanocomposite for enhanced visible light-driven photocatalytic activity. Res Chem Intermed 45, 1689–1705 (2019). https://doi.org/10.1007/s11164-018-3699-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3699-z

Keywords

Navigation