Skip to main content
Log in

Surface reconstruction of Pt–Sn nanoparticles supported on Al2O3 in the presence of carbon monoxide

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

FTIR spectroscopy and volumetric measurements are used to study the adsorption of CO (mainly 1% CO/He) in the temperature range 300–713 K on a 1.2% Pt–2.7% Sn/Al2O3 solid reduced in H2 at 713 K leading from XRD to PtSn bimetallic particles. This reveals the changes in the adsorption properties of the Pt sites for CO adsorption by comparison with monometallic Pt/Al2O3 solids and the stability of the Pt–Sn bimetallic particles in the presence of CO. At 300 K, FTIR spectroscopy shows that the insertion of Sn leads to (a) the total disappearance of the Pt sites forming bridged CO species (ascribed to a geometric effect of Sn) and (b) a significant shift in the position of the IR band of linear CO species on Pt sites from 2066 to 2044 cm−1 on Pt and Pt–Sn particles, respectively, ascribed to different adsorbed species, namely LPt and L1Pt–Sn, respectively. Moreover, it is shown that the insertion of Sn is associated with the decrease in the amount (in µmol/g of platinum) of Pt adsorption sites for CO adsorption. The evolution of the IR band of the L1Pt–Sn CO species with the increase in Ta in isobaric conditions reveals a modification of the surface of the Pt–Sn particles for Ta > ≈  460 K ascribed to enrichment in Pt° due to a surface reconstruction. The Pt sites of the reconstructed surface are characterized by an IR band at 2057 cm−1 after adsorption of CO at 300 K ascribed to a linear CO species named L2Pt–Sn. The reconstructed surface is stable in the presence of CO in the range 300–713 K and disappears by hydrogen reduction at 713 K. Successive surface reconstruction/hydrogen reduction at 713 K cycles lead to an ageing of the Pt–Sn particles associated with a progressive decrease in the amount of Pt° sites on the freshly prepared and reconstructed Pt–Sn particles. It is shown that the reconstruction of the Pt–Sn particles is probably due to the formation of SnOx species via oxygen species coming mainly from the hydroxyls groups of the support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.K.A. Clarke, Chem. Rev. 75, 291 (1975)

    Article  CAS  Google Scholar 

  2. W.M.H. Sachter, R.A. van Santen, Adv. Catal. 26, 69 (1977)

    Google Scholar 

  3. V. Ponec, Appl. Catal. A 222, 31 (2001)

    Article  CAS  Google Scholar 

  4. J.A. Rodriguez, Surf. Sci. Rep. 24, 223 (1996)

    Article  CAS  Google Scholar 

  5. J.M. Thomas, R. Raja, B.F.G. Johnson, S. Hermans, M.D. Jones, T. Khimyak, Ind. Eng. Chem. Res. 42, 1563 (2003)

    Article  CAS  Google Scholar 

  6. J.H. Sinfelt, Catal. Today 53, 305 (1999)

    Article  CAS  Google Scholar 

  7. M.S. Kumar, D. Chen, A. Holmen, J.C. Walmsley, Catal. Today 142, 17 (2009)

    Article  CAS  Google Scholar 

  8. J.J.H.B. Sattler, A.M. Beale, B.M. Weckhuysen, Phys. Chem. Chem. Phys. 15, 12095 (2013)

    Article  CAS  PubMed  Google Scholar 

  9. F. Coloma, A. Sepflveda-Escribano, J.L.G. Fierro, F. Rodriguez-Reinoso, Appl. Catal. A 148, 63 (1996)

    Article  CAS  Google Scholar 

  10. P.D. Zgolicz, V.I. Rodríguez, I.M.J. Vilella, S.R. de Miguel, O.A. Scelza, Appl. Catal. A 392, 208 (2011)

    Article  CAS  Google Scholar 

  11. W.D. Michalak, J.M. Krier, S. Alayoglu, J.Y. Shin, K. An, K. Komvopoulos, Z. Liu, G.A. Somorjai, J. Catal. 312, 17 (2014)

    Article  CAS  Google Scholar 

  12. A. Moscu, L. Veyre, C. Thieuleux, F. Meunier, Y. Schuurman, Catal. Today 258, 241 (2015)

    Article  CAS  Google Scholar 

  13. V.R. Stamenkovic, M. Arenz, C.A. Lucas, M.E. Gallagher, P.N. Ross, N.M. Markovic, J. Am. Chem. Soc. 125, 2736 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. V.R. Stamenkovic, M. Arenz, B.B. Blizanac, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, Surf. Sci. 576, 145 (2005)

    Article  CAS  Google Scholar 

  15. Y. Soma-Nota, W.M.H. Sachtler, J. Catal. 32, 315 (1974)

    Article  Google Scholar 

  16. A. Vicente, G. Lafaye, C. Especel, P. Marécot, C.T. Williams, J. Catal. 283, 133 (2011)

    Article  CAS  Google Scholar 

  17. E.A. Sales, J. Jove, M. de Jesus Mendes, F. Bozon-Verduraz, J. Catal. 195, 88 (2000)

    Article  CAS  Google Scholar 

  18. I. Jbir, J. Couble, S. Khaddar-Zine, Z. Ksibi, F. Meunier, D. Bianchi, ACS Catal. 6, 2545 (2016)

    Article  CAS  Google Scholar 

  19. A. Bourane, O. Dulaurent, D. Bianchi, J. Catal. 195, 115 (2000)

    Article  CAS  Google Scholar 

  20. G. Ertl, J. Mol. Catal. 74, 1 (1992)

    Article  CAS  Google Scholar 

  21. G.T. Baronnetti, S.R. de Miguel, O.A. Scelza, M.A. Fritzler, A.A. Castro, Appl. Catal. 19, 77 (1985)

    Article  Google Scholar 

  22. G.T. Baronnetti, S.R. de Miguel, O.A. Scelza, A.A. Castro, Appl. Catal. 24, 109 (1986)

    Article  Google Scholar 

  23. S.R. de Miguel, G.T. Baronnetti, A.A. Castro, O.A. Scelza, Appl. Catal. 45, 61 (1988)

    Article  Google Scholar 

  24. Y.-X. Li, K.J. Klabunde, B. Davis, J. Catal. 128, 1 (1991)

    Article  CAS  Google Scholar 

  25. W.D. Rhodes, K. Lazar, V.I. Kovalchuk, J.L. d’Itri, J. Catal. 211, 173 (2002)

    CAS  Google Scholar 

  26. J. Ruiz-Martınez, A. Sepulveda-Escribano, J.A. Anderson, F. Rodrıguez-Reinoso, Catal. Today 123, 235 (2007)

    Article  CAS  Google Scholar 

  27. R. Srinivasan, L.A. Rice, B.H. Davis, J. Catal. 129, 257 (1991)

    Article  CAS  Google Scholar 

  28. A. Bourane, D. Bianchi, J. Catal. 218, 447 (2003)

    Article  CAS  Google Scholar 

  29. Y. Uemura, Y. Inada, K.K. Bando, T. Sasaki, N. Kamiuchi, K. Eguchi, A. Yagishita, M. Nomura, M. Tada, Y. Iwasawa, J. Phys. Chem. C 115, 5823 (2011)

    Article  CAS  Google Scholar 

  30. T. Chafik, O. Dulaurent, J.L. Gass, D. Bianchi, J. Catal. 179, 503 (1998)

    Article  CAS  Google Scholar 

  31. P.T. Fanson, W.N. Delgass, J. Lauterbach, J. Catal. 204, 35 (2001)

    Article  CAS  Google Scholar 

  32. G.J. Arteaga, J.A. Anderson, S.M. Becker, C.H. Rochester, J. Mol. Cat. A 145, 183 (1999)

    Article  CAS  Google Scholar 

  33. J. Couble, D. Bianchi, Appl. Catal. A 445–446, 1 (2012)

    Article  CAS  Google Scholar 

  34. H. Verbeek, W.M.H. Sachtler, J. Catal. 42, 257 (1976)

    Article  CAS  Google Scholar 

  35. J. Singh, R.C. Nelson, B.C. Vicente, S.L. Scott, J.A. van Bokhoven, Phys. Chem. Chem. Phys. 12, 5668 (2010)

    Article  CAS  PubMed  Google Scholar 

  36. J. Couble, D. Bianchi, J. Catal. 352, 672 (2017)

    Article  CAS  Google Scholar 

  37. T. Paffett, S.C. Gebhard, R.G. Windham, B.E. Koel, J. Phys. Chem. 94, 6831 (1990)

    Article  CAS  Google Scholar 

  38. F. Giraud, J. Couble, C. Geantet, N. Guilhaume, E. Puzenat, S. Loridant, S. Gros, L. Porcheron, M. Kanniche, D. Bianchi, J. Phys. Chem. C 119, 16089 (2015)

    Article  CAS  Google Scholar 

  39. A. Moscu, Y. Schuurman, L. Veyre, C. Thieuleux, F. Meunier, Chem. Commun. 50, 8590 (2014)

    Article  CAS  Google Scholar 

  40. A. Moscu, C. Theodoridi, L. Cardenas, C. Thieuleux, D. Motta-Meira, G. Agostini, Y. Schuurman, F. Meunier, J. Catal. 359, 76 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhak Kherbeche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arrahli, A., Kherbeche, A. & Bianchi, D. Surface reconstruction of Pt–Sn nanoparticles supported on Al2O3 in the presence of carbon monoxide. Res Chem Intermed 45, 1421–1436 (2019). https://doi.org/10.1007/s11164-018-3686-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3686-4

Keywords

Navigation