Research on Chemical Intermediates

, Volume 45, Issue 3, pp 1527–1543 | Cite as

Superb catalytic properties of nickel cobalt bimetallic nanoparticles immobilized on 3D nitrogen-doped graphene for thermal decomposition of ammonium perchlorate

  • Seyed Ghorban HosseiniEmail author
  • Setareh Gholami
  • Mojtaba MahyariEmail author


Nickel cobalt bimetallic nanoparticles (NiCo NPs) with different molar ratios were stabilized over three-dimensional nitrogen-doped graphene [3D-(N)G] by a chemical coreduction method. Various spectroscopic and microscopic analysis techniques were employed to characterize the resulting NiCo@3D-(N)G samples. The catalytic activity of as-synthesized material was examined for thermal decomposition of ammonium perchlorate (AP) using differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). In presence of NiCo@3D-(N)G nanocomposite, the decomposition temperature was decreased by 140.9 °C and the high-temperature decomposition peak of AP disappeared. Also, the total heat release during decomposition of AP was significantly increased to about 1176.6 J g−1. The presented catalyst exhibits an impressive catalytic effect for thermal decomposition of AP, due to its unique properties including porous structure, good dispersion of NiCo NPs over 3D-(N)G, consolidated interaction between 3D-(N)G and NiCo NPs, and synergistic effect between two metals.


Ammonium perchlorate Thermal decomposition NiCo bimetallic nanoparticles Catalyst Nitrogen-doped graphene 



The authors gratefully acknowledge financial support from the Iran National Science Foundation (INSF).


  1. 1.
    H. Feng, K. Mintz, R. Augsten, D. Jones, Thermochim. Acta 311, 1–2 (1998)CrossRefGoogle Scholar
  2. 2.
    J. Cain, M.Q. Brewster, Propellants Explos. Pyrotech. 31, 4 (2006)CrossRefGoogle Scholar
  3. 3.
    V. Boldyrev, Thermochim. Acta 443, 1 (2006)CrossRefGoogle Scholar
  4. 4.
    H. Duan, X. Lin, G. Liu, L. Xu, F. Li, J. Mater. Process. Technol. 208, 1–3 (2008)CrossRefGoogle Scholar
  5. 5.
    D. Hongzhen, L. Xiangyang, L. Guanpeng, X. Lei, L. Fengsheng, Chin. J. Chem. Eng. 16, 2 (2008)Google Scholar
  6. 6.
    M. Song, M. Chen, Z. Zhang, Propellants Explos. Pyrotech. 33, 4 (2008)CrossRefGoogle Scholar
  7. 7.
    L. Li, X. Sun, X. Qiu, J. Xu, G. Li, Inorg. Chem. 47, 19 (2008)Google Scholar
  8. 8.
    L. Chen, L. Li, G. Li, J. Alloys Compd. 464, 1–2 (2008)CrossRefGoogle Scholar
  9. 9.
    G. Tang, S. Tian, Z. Zhou, Y. Wen, A. Pang, Y. Zhang, D. Zeng, H. Li, B. Shan, C. Xie, J. Phys. Chem. C 118, 22 (2014)Google Scholar
  10. 10.
    Y. Zhang, M. Ma, J. Yang, H. Su, W. Huang, X. Dong, Nanoscale 6, 8 (2014)Google Scholar
  11. 11.
    S. Chaturvedi, P.N. Dave, N.N. Patel, Synth. React. Inorg. Met. Org. Nano Met. Chem. 44, 2 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Chaturvedi, P.N. Dave, N.N. Patel, Appl. Nanosci. 5, 1 (2015)CrossRefGoogle Scholar
  13. 13.
    R. Dubey, M. Chawla, P.F. Siril, G. Singh, Thermochim. Acta 572, 30 (2013)CrossRefGoogle Scholar
  14. 14.
    X. Yang, C. Chen, J. Li, G. Zhao, X. Ren, X. Wang, RSC Adv. 2, 23 (2012)Google Scholar
  15. 15.
    S.U. Son, Y. Jang, K.Y. Yoon, E. Kang, T. Hyeon, Nano Lett. 4, 6 (2004)CrossRefGoogle Scholar
  16. 16.
    S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 7100 (2006)CrossRefGoogle Scholar
  17. 17.
    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature 446, 7131 (2007)Google Scholar
  18. 18.
    C. Li, G. Shi, Nanoscale 4, 18 (2012)CrossRefGoogle Scholar
  19. 19.
    Z.-S. Wu, Y. Sun, Y.-Z. Tan, S. Yang, X. Feng, K. Müllen, J. Am. Chem. Soc. 134, 48 (2012)Google Scholar
  20. 20.
    X. Zhang, Z. Sui, B. Xu, S. Yue, Y. Luo, W. Zhan, B. Liu, J. Mater. Chem. 21, 18 (2011)Google Scholar
  21. 21.
    M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, J.H. Satcher Jr., T.F. Baumann Jr., J. Am. Chem. Soc. 132, 40 (2010)CrossRefGoogle Scholar
  22. 22.
    M. Sankaran, B. Viswanathan, S.S. Murthy, Int. J. Hydrogen Energy 33, 1 (2008)CrossRefGoogle Scholar
  23. 23.
    D.H. Lee, J.A. Lee, W.J. Lee, S.O. Kim, Small 7, 1 (2011)CrossRefGoogle Scholar
  24. 24.
    Y.-C. Lin, C.-Y. Lin, P.-W. Chiu, Appl. Phys. Lett. 96, 13 (2010)Google Scholar
  25. 25.
    H. Wang, T. Maiyalagan, X. Wang, ACS Catal. 2, 5 (2012)Google Scholar
  26. 26.
    H. Hosseini, M. Mahyari, A. Bagheri, A. Shaabani, Biosens. Bioelectron. 52, 1 (2014)CrossRefGoogle Scholar
  27. 27.
    L. Panchakarla, K. Subrahmanyam, S. Saha, A. Govindaraj, H. Krishnamurthy, U. Waghmare, C. Rao, Adv. Mater. 21, 46 (2009)Google Scholar
  28. 28.
    X.-K. Kong, C.-L. Chen, Q.-W. Chen, Chem. Soc. Rev. 43, 8 (2014)CrossRefGoogle Scholar
  29. 29.
    K.-X. Sheng, Y.-X. Xu, L. Chun, G.-Q. Shi, New Carbon Mater. 26, 1 (2011)CrossRefGoogle Scholar
  30. 30.
    L. Zeng, X. Cui, L. Chen, T. Ye, W. Huang, R. Ma, X. Zhang, J. Shi, Carbon 114 (2017)Google Scholar
  31. 31.
    Y. Fu, H.Y. Yu, C. Jiang, T.H. Zhang, R. Zhan, X. Li, J.F. Li, J.H. Tian, R. Yang, Adv. Funct. Mater. 28, 9 (2018)Google Scholar
  32. 32.
    B. Chen, F. Li, Z. Huang, G. Yuan, Appl. Catal. B Environ. 200, 666 (2017)CrossRefGoogle Scholar
  33. 33.
    J. Senthilnathan, K.S. Rao, M. Yoshimura, J. Mater. Chem. A 2, 10 (2014)CrossRefGoogle Scholar
  34. 34.
    X. Cai, X. Shen, L. Ma, Z. Ji, C. Xu, A. Yuan, Chem. Eng. J. 27, 268 (2015)CrossRefGoogle Scholar
  35. 35.
    D. Devadathan, R. Raveendran, in IOP Conference Series: Materials Science and Engineering IOP Publishing, (2015), p. 012020Google Scholar
  36. 36.
    Y. Ren, H. Wei, X. Huang, B. Yang, J. Wang, J. Ding, Int. J. Electrochem. Sci. 9, 3962 (2014)Google Scholar
  37. 37.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 7 (2007)CrossRefGoogle Scholar
  38. 38.
    F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 3 (1970)CrossRefGoogle Scholar
  39. 39.
    B. Qiu, M. Xing, J. Zhang, J. Am. Chem. Soc. 136, 16 (2014)CrossRefGoogle Scholar
  40. 40.
    M. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L. Cancado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9, 11 (2007)CrossRefGoogle Scholar
  41. 41.
    P.W.M. Jacobs, H. Whitehead, Chem. Rev. 69, 4 (1969)CrossRefGoogle Scholar
  42. 42.
    M. Wu, S. Meng, Q. Wang, W. Si, W. Huang, X. Dong, ACS Appl. Mater. Interfaces 7, 38 (2015)Google Scholar
  43. 43.
    M. Mahyari, A. Shaabani, Y. Bide, RSC Adv. 3, 44 (2013)CrossRefGoogle Scholar
  44. 44.
    M. Mahyari, Y. Bide, J.N. Gavgani, Appl. Catal. A 517, 100 (2016)CrossRefGoogle Scholar
  45. 45.
    G. Singh, I. Kapoor, S. Dubey, J. Alloys Compd. 480, 2 (2009)CrossRefGoogle Scholar
  46. 46.
    N. Li, M. Cao, Q. Wu, C. Hu, CrystEngComm 14, 2 (2012)CrossRefGoogle Scholar
  47. 47.
    J. Zhao, Z. Liu, Y. Qin, W. Hu, CrystEngComm 16, 10 (2014)CrossRefGoogle Scholar
  48. 48.
    X. Zhang, W. Jiang, D. Song, Y. Liu, J. Geng, F. Li, Propellants Explos. Pyrotech. 34, 2 (2009)Google Scholar
  49. 49.
    Y. Lan, J. Deng, G. Li, Y. Luo, J. Therm. Anal. Calorim. 127, 3 (2017)CrossRefGoogle Scholar
  50. 50.
    Y. Lan, X. Li, G. Li, Y. Luo, J. Nanopart. Res. 17, 10 (2015)CrossRefGoogle Scholar
  51. 51.
    A.K. Geim, K.S. Novoselov, in Nanoscience and Technology: A Collection of Reviews from Nature Journals World Scientific, (2010), pp. 11–19Google Scholar
  52. 52.
    S. Chaturvedi, P.N. Dave, J. Saudi Chem. Soc. 17, 2 (2013)CrossRefGoogle Scholar
  53. 53.
    S.G. Hosseini, Z. Khodadadipoor, M. Mahyari, Appl. Organomet. Chem. 32, 1 (2018)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of ChemistryMalek Ashtar University of TechnologyTehranIran

Personalised recommendations