Skip to main content
Log in

Comparison of sulfuric acid- or phosphoric acid-modified CeO2 and the influence of surface acidity and redox property on its activity toward NH3-SCR

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A series of CeO2 prepared with H2SO4 (C–S), H3PO4 (C–P) and H2SO4 + H3PO4 (C–P–S) were investigated in selective catalytic reduction of NOx with NH3. The sulfates contributed to the improvement of Brønsted (B) acid sites, while phosphates were prone to the enhancement of Lewis (L) acid sites, which could improve the catalytic activity. Furthermore, sulfates existed in the surface of C–P–S and C–S; phosphates occurred on the subsurface region or were highly dispersed on the surface of C–P–S and C–P. Besides, the nitrates adsorbed on the CeO2 and NH3 contacted with the sulfates, which followed the L–H mechanism at 200 °C on C–P–S and C–S. The adsorption and activation of NO and NH3 over C–P occurred at the same active sites, which obeyed the E–R mechanism at 200 °C. C–P–S possessed the best catalytic activity because of the appropriate surface acidity and redox property, and more than 80% conversion of NOx was obtained at 220–450 °C.

Graphical abstract

CeO2 modified by H2SO4 (C–S), H3PO4 (C–P) and H2SO4 + H3PO4 (C–P–S) was prepared and used for selective catalytic reduction of NOx by NH3. The presence of sulfate species over C–S and C–P–S contributed to the formation of surface acidity. CeO2 modified by phosphoric acid favored excellent oxidation ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Niu, X.Y. Shi, F.D. Liu, K. Liu, L.J. Xie, Y. You, H. He, Chem. Eng. J. 294, 254 (2016)

    Article  CAS  Google Scholar 

  2. L. Xu, X.S. Li, M. Crocker, Z.S. Zhang, A.M. Zhu, C. Shi, J. Mol. Catal. A: Chem. 378, 82 (2013)

    Article  CAS  Google Scholar 

  3. T. Yu, J. Wang, M.Q. Shen, J.Q. Wang, W. Li, Chem. Eng. J. 264, 845 (2015)

    Article  CAS  Google Scholar 

  4. W.C. Yu, X.D. Wu, Z.C. Si, D. Weng, Appl. Surf. Sci. 283, 209 (2013)

    Article  CAS  Google Scholar 

  5. H. Tounsi, S. Djemal, C. Petitto, G. Delahay, Appl. Catal. B Environ. 107, 158 (2011)

    Article  CAS  Google Scholar 

  6. Y.J. Kim, H.J. Kwon, I. Heo, I.S. Nam, B.K. Cho, J.W. Choung, M.S. Cha, G.K. Yeo, Appl. Catal. B Environ. 126, 9 (2012)

    Article  CAS  Google Scholar 

  7. Z.M. Liu, S.X. Zhang, J.H. Li, L.L. Ma, Appl. Catal. B Environ. 144, 90 (2014)

    Article  CAS  Google Scholar 

  8. N.Y. Topsøe, Science 265, 1217 (1994)

    Article  PubMed  Google Scholar 

  9. L. Chen, J.H. Li, M.F. Ge, Environ. Sci. Technol. 44, 9590 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. K.Z. Li, J.H. Li, Appl. Catal. B Environ. 140, 483 (2013)

    Google Scholar 

  11. Y. Peng, R.Y. Qu, X.Y. Zhang, J.H. Li, Chem. Commun. 49, 6215 (2013)

    Article  CAS  Google Scholar 

  12. L.S. Cheng, R.T. Yang, N. Chen, J. Catal. 164, 70 (1996)

    Article  CAS  Google Scholar 

  13. Q.L. Zhang, Z.X. Song, P. Ning, X. Liu, H. Li, J.J. Gu, Catal. Commun. 59, 170 (2015)

    Article  CAS  Google Scholar 

  14. G. Qi, R.T. Yang, Appl. Catal. B Environ. 44, 217 (2003)

    Article  CAS  Google Scholar 

  15. C. Larese, M. López Granados, R. Mariscal, J.L.G. Fierro, P.S. Lambrou, A.M. Efstathiou, Appl. Catal. B Environ. 59, 13 (2005)

    Article  CAS  Google Scholar 

  16. S.J. Yang, Y.F. Guo, H.Z. Chang, L. Ma, Y. Peng, Z. Qu, N.Q. Yan, C.Z. Wang, J.H. Li, Appl. Catal. B Environ. 136–137, 19 (2013)

    Article  CAS  Google Scholar 

  17. Z.B. Wu, R.B. Jin, Y. Liu, H.Q. Wang, Catal. Commun. 9, 2217 (2008)

    Article  CAS  Google Scholar 

  18. F.D. Liu, K. Asakura, H. He, W.P. Shan, X.Y. Shi, C.B. Zhang, Appl. Catal. B Environ. 103, 369 (2011)

    Article  CAS  Google Scholar 

  19. Z.C. Si, D. Weng, X.D. Wu, Z.R. Ma, J. Ma, R. Ran, Catal. Today 201, 122 (2013)

    Article  CAS  Google Scholar 

  20. Z.C. Si, D. Weng, X.D. Wu, R. Ran, Z.R. Ma, Catal. Commun. 17, 146 (2012)

    Article  CAS  Google Scholar 

  21. S. Gao, X.B. Chen, H.Q. Wang, J.S. Mo, Z.B. Wu, Y. Liu, X.L. Weng, J. Colloid Interface Sci. 394, 515 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. C. Larese, F.C. Galisteo, M.L. Granados, R. Mariscal, J. Fierro, M. Furió, R.F. Ruiz, Appl. Catal. B Environ. 40, 305 (2013)

    Article  CAS  Google Scholar 

  23. F. Li, Y.B. Zhang, D.H. Xiao, D.Q. Wang, X.Q. Pan, X.G. Yang, Chem. Cat. Chem. 2, 1416 (2010)

    CAS  Google Scholar 

  24. F. Li, D.H. Xiao, Y.B. Zhang, D.Q. Wang, X.Q. Pan, X.G. Yang, Chin. J. Catal. 31, 938 (2010)

    Article  CAS  Google Scholar 

  25. J. Yu, Z.C. Si, L. Chen, X.D. Wu, D. Weng, Appl. Catal. B Environ. 163, 223 (2015)

    Article  CAS  Google Scholar 

  26. Z.C. Si, D. Weng, X.D. Wu, J. Yang, B. Wang, Catal. Commun. 11, 1045 (2010)

    Article  CAS  Google Scholar 

  27. S.X. Yang, W.P. Zhu, Z.P. Jiang, Z.X. Chen, J.B. Wang, Appl. Surf. Sci. 252, 8499 (2006)

    Article  CAS  Google Scholar 

  28. X. Gao, Y. Jiang, Y. Zhong, Z.Y. Luo, K.F. Cen, J. Hazard. Mater. 174, 734 (2010)

    Article  CAS  PubMed  Google Scholar 

  29. C.X. Liu, L. Chen, H.Z. Chang, L. Ma, Y. Peng, H. Arandiyan, J.H. Li, Catal. Commun. 40, 145 (2013)

    Article  CAS  Google Scholar 

  30. J.C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Phys. Chem. Chem. Phys. 2, 1319 (2000)

    Article  CAS  Google Scholar 

  31. Y.S. Eom, S.H. Jeon, T.A. Ngo, J. Kim, T.G. Lee, Catal. Lett. 121, 219 (2008)

    Article  CAS  Google Scholar 

  32. L. Chen, J.H. Li, M.F. Ge, Chem. Eng. J. 170, 531 (2011)

    Article  CAS  Google Scholar 

  33. X.J. Yao, Z. Wang, S.H. Yu, F.M. Yang, L. Dong, J. Mol. Catal. A: Chem. 542, 282 (2017)

    Article  CAS  Google Scholar 

  34. L. Zhang, W.X. Zou, K.L. Ma, Y. Cao, Y. Xiong, S.G. Wu, C.J. Tang, F. Gao, L. Dong, J. Phys. Chem. C 119, 1155 (2015)

    Article  CAS  Google Scholar 

  35. Z.M. Liu, S.X. Zhang, J.H. Li, J.Z. Zhu, L.L. Ma, Appl. Catal. B Environ. 158, 11 (2014)

    Article  CAS  Google Scholar 

  36. Y. Jiang, X. Gao, Y.X. Zhang, W.H. Wu, H. Song, Z.Y. Luo, K.F. Cen, J. Hazard. Mater. 274, 270 (2014)

    Article  CAS  PubMed  Google Scholar 

  37. N.Y. Topsoe, H. Topsoe, J.A. Dumesic, J. Catal. 151, 226 (1995)

    Article  CAS  Google Scholar 

  38. I. Nova, C. Ciardelli, E. Tronconi, D. Chatterjee, B. Bandl-Konrad, Catal. Today 114, 3 (2006)

    Article  CAS  Google Scholar 

  39. W.S. Hu, Y.H. Zhang, S.J. Liu, C.H. Zheng, X. Gao, I. Nova, E. Tronconi, Appl. Catal. B Environ. 206, 449 (2017)

    Article  CAS  Google Scholar 

  40. H. Zhang, Y.G. Zou, Y. Peng, Chin. J. Catal. 38, 160 (2017)

    Article  CAS  Google Scholar 

  41. X.S. Du, X. Gao, K.Z. Qiu, Z.Y. Luo, K.F. Cen, J. Phys. Chem. C 119, 1905 (2015)

    Article  CAS  Google Scholar 

  42. Y. Peng, J.H. Li, L. Chen, J.H. Chen, J. Han, H. Zhang, W. Han, Environ. Sci. Technol. 46, 2864 (2012)

    Article  CAS  PubMed  Google Scholar 

  43. T. Yi, Y.B. Zhang, J.W. Li, X.G. Yang, Chin. J. Catal. 37, 300 (2016)

    Article  CAS  Google Scholar 

  44. R.Y. Qu, X. Gao, K.F. Cen, J.H. Li, Appl. Catal. B Environ. 142–143, 290 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 21307047 and 51509083) and Henan Key Scientific Research Projects (Nos. 18A610002 and 16A610005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiulin Zhang or Xuejun Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Wang, J., Zhang, Q. et al. Comparison of sulfuric acid- or phosphoric acid-modified CeO2 and the influence of surface acidity and redox property on its activity toward NH3-SCR. Res Chem Intermed 45, 645–661 (2019). https://doi.org/10.1007/s11164-018-3635-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3635-2

Keywords

Navigation