Synthesis, structure, computational modeling, and biological activity of two novel bimesitylene derivatives

Abstract

Tetrazole- and nitrile-containing bimesitylene derivatives with potential use in coordination chemistry were synthesized and characterized, and their structural particularities are discussed. For the bimesitylene bistetrazole derivative, geometry optimization was carried out by quantum-chemical calculations using density functional theory together with vibrational frequencies, natural bond orbitals, and highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) calculations. The newly synthesized bimesitylene derivatives were also evaluated for their antimicrobial activity against three different reference strains, namely Escherichia coli, Staphylococcus aureus, and Candida albicans.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    http://www.yasara.org—YASARA official site (Yet Another Scientific Artificial Reality Application).

References

  1. 1.

    J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 102, 1359 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    C. Janiak, J.K. Vieth, New J. Chem. 34, 2366 (2010)

    Article  CAS  Google Scholar 

  3. 3.

    J.N. Moorthy, R. Natarajan, P. Venugopalan, J. Org. Chem. 70, 8568 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    W. Lu, Z. Wei, D. Yuan, J. Tian, S. Fordham, H.C. Zhou, Chem. Mater. 26, 4589 (2014)

    Article  CAS  Google Scholar 

  5. 5.

    J.N. Moorthy, R. Natarajan, G. Savitha, P. Venugopalan, Cryst. Growth Des. 6(4), 919 (2006)

    Article  CAS  Google Scholar 

  6. 6.

    C.X. Wei, M. Bian, G.H. Gong, Molecules 20, 5528 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    K. Adil, Y. Belmabkhout, R.S. Pillai, A. Cadiau, P.M. Bhatt, A.H. Assen, G. Maurin, M. Eddaoudi, Chem. Soc. Rev. 46, 3402 (2017)

    Article  CAS  Google Scholar 

  8. 8.

    L.J. Chen, H.B. Yang, M. Shionoya, Chem. Soc. Rev. 46, 2555 (2017)

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    L.R. Mingabudinova, V.V. Vinogradov, V.A. Milichko, E. Hey-Hawkins, A.V. Vinogradov, Chem. Soc. Rev. 45, 5408 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    M. Eddaoudi, D.F. Sava, J.F. Eubank, K. Adila, V. Guillerm, Chem. Soc. Rev. 44, 228 (2015)

    Article  CAS  Google Scholar 

  11. 11.

    Y.X. Tan, F. Wang, J. Zhang, Chem. Soc. Rev. 47, 2130 (2018)

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    V. Karunakaran, V. Balachandran, Spectrochim. Acta A 98, 229 (2012)

    Article  CAS  Google Scholar 

  13. 13.

    A. Suvitha, S. Periandy, S. Boomadevi, M. Govindarajan, Spectrochim. Acta A 117, 216 (2014)

    Article  CAS  Google Scholar 

  14. 14.

    M. Karabacak, E. Sahin, M. Cinar, I. Erol, M. Kurt, J. Mol. Struct. 886, 148 (2008)

    Article  CAS  Google Scholar 

  15. 15.

    I. Sidir, Y.G. Sidir, M. Kumalar, E. Tasal, J. Mol. Struct. 964, 134 (2010)

    Article  CAS  Google Scholar 

  16. 16.

    G. Cahiez, C. Chaboche, F. Mahuteau-Betzer, M. Ahr, Org. Lett. 7(10), 1943 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    M.F. Zaltariov, C. Cojocaru, S. Shova, I. Sacarescu, M. Cazacu, J. Mol. Struct. 1120, 302 (2016)

    Article  CAS  Google Scholar 

  18. 18.

    O.M. Becker, A.D. MacKerell, B. Roux, M. Watanabe, Conformational Analysis, in Computational Biochemistry and Biophysics (Marcel Dekker, New York, 2001), pp. 69–90

    Google Scholar 

  19. 19.

    J. Frau, D. Glossman-Mitnik, Molecules 23(3), 559 (2018)

    Article  CAS  PubMed Central  Google Scholar 

  20. 20.

    R. Vijayaraj, V. Subramanian, P.K. Chattaraj, J. Chem. Theory Comput. 5(10), 2744 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    C.M. Chang, Y.H. Ou, T.C. Liu, S.Y. Lu, M.K. Wang, SAR QSAR Environ. Res. 27(6), 441 (2016)

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    L.L. Dai, S.F. Cui, G.L.V. Damu, C.H. Zhou, Chin. J. Org. Chem. 33, 224 (2013)

    Article  CAS  Google Scholar 

  23. 23.

    J. Roh, K. Vavrova, A. Hrabalek, Eur. J. Org. Chem. 31, 6101 (2012)

    Article  CAS  Google Scholar 

  24. 24.

    C.G. Pierce, J.L. Lopez-Ribot, Expert Opin. Drug Discov. 8(9), 1177 (2013)

    Article  CAS  Google Scholar 

  25. 25.

    B. Minea, N. Marangoci, D. Peptanariu, I. Rosca, V. Năstasă, A. Corciova, C.D. Varganici, A. Nicolescu, A. Fifere, A. Neamțu, M. Mareș, M. Bărboiu, M. Pinteală, New J. Chem. 40, 1765 (2016)

    Article  CAS  Google Scholar 

  26. 26.

    CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.36.32, 2003

  27. 27.

    O.V. Dolomanov, L.J. Bourhis, R.J.J. Gildea, A.K. Howard, H. Puschmann, J. Appl. Cryst. 42, 339 (2009)

    Article  CAS  Google Scholar 

  28. 28.

    G.M. Sheldrick, Acta Crystallogr. A A64, 112 (2008)

    Article  CAS  Google Scholar 

  29. 29.

    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09 (Gaussian Inc., Wallingford, CT, 2009)

    Google Scholar 

  30. 30.

    R. Dennington, T. Keith, J. Millam, GaussView, Version 5 (Semichem Inc., Shawnee Mission, KS, 2009)

    Google Scholar 

  31. 31.

    E. Krieger, G. Vriend, Bioinformatics 30, 2981 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    J.J.P. Stewart, J. Mol. Model. 19, 1 (2013)

    Article  CAS  Google Scholar 

  33. 33.

    D.F. Brown, D. Kothari, J. Clin. Pathol. 28, 779 (1975)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support from the European Social Fund for Regional Development, Competitiveness Operational Programme Axis 1—Project “Novel Porous Coordination Polymers with Organic Ligands of Variable Length for Gas Storage,” POCPOLIG (ID P_37_707, Contract 67/08.09.2016, cod MySMIS: 104810) is gratefully acknowledged. The research related to computational chemistry is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 667387 WIDESPREAD 2-2014 SupraChem Lab.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexandru Rotaru.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bahrin, L.G., Clima, L., Shova, S. et al. Synthesis, structure, computational modeling, and biological activity of two novel bimesitylene derivatives. Res Chem Intermed 45, 453–469 (2019). https://doi.org/10.1007/s11164-018-3611-x

Download citation

Keywords

  • Bimesitylene derivatives
  • Tetrazole
  • DFT
  • HOMO–LUMO
  • Antimicrobial activity