Skip to main content

Advertisement

Log in

Investigation of γ-AlOOH and NiWO4-coated boehmite micro/nanostructure under UV/visible light photocatalysis

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A large-scale boehmite (γ-AlOOH) sphere and NiWO4-coated boehmite micro/nanostructured materials were synthesized via a facile two-step hydrothermal method with microwave irradiation using a solution phase route. The morphologies and structures of the prepared samples were characterized by scanning electron microscopy, high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy, and their optical and photocatalytic properties were also measured. The samples boehmite, AN1 and AN2 (different concentrations by NiWO4) were evaluated under UV/visible-light irradiation, and the AN1 sample showed intense (92.6%) degradation of methyl blue dye of the three samples. This enhancement was explained reasonably by HR-TEM evaluated surface-coated core–shell structured γ-AlOOH@NiWO4 shell width was about 10–15 nm and the core–shell size 120 nm. From the optical analysis, the core–shell heteronanostructure new energy level was attributed to the synergistic effect between NiWO4 and boehmite. In particular, a down-conversion luminescence process at the 450 nm excited energy optimization of redox for the efficient photogeneration of electron–hole pairs. Additionally, trapping measurement showed that O2· and OH· species generated in the photocatalytic process played a key role in the degradation reaction. Based on these findings, this approach may offer a new strategy for the fabrication of surface-controlled spheres of core/shell structure-based photocatalysts with enhanced efficiency for environmental remediation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 5, 353 (2003)

    Article  Google Scholar 

  2. C. Yan, D. Xue, J. Phys. Chem. B 14, 7102 (2006)

    Article  Google Scholar 

  3. T. Mokari, E. Rothenberg, I. Popov, R. Costi, U. Banin, Science 5678, 1787 (2004)

    Article  Google Scholar 

  4. E. Rafiee, M. Khodayari, Res. Chem. Intermed. 4, 3523 (2016)

    Article  Google Scholar 

  5. B. Wang, J. Xia, L. Mei, L. Wang, Q. Zhang, ACS Sustain. Chem. Eng. 1, 1343 (2018)

    Article  Google Scholar 

  6. Q. Zhang, Q. Yang, P. Phanlavong, Y. Li, Z. Wang, T. Jiao, Q. Peng, ACS Sustain. Chem. Eng. 5, 4161 (2017)

    Article  CAS  Google Scholar 

  7. R. Guo, T. Jiao, R. Li, Y. Chen, W. Guo, L. Zhang, J. Zhou, Q. Zhang, Q. Peng, ACS Sustain. Chem. Eng. 1, 1279 (2018)

    Article  Google Scholar 

  8. X. Luo, K. Ma, T. Jiao, R. Xing, L. Zhang, J. Zhou, B. Li, Nanoscale Res. Lett. 1, 99 (2017)

    Article  Google Scholar 

  9. M. Yada, C. Taniguchi, T. Torikai, T. Watari, S. Furuta, H. Katsuki, Adv. Mater. 16, 1448 (2004)

    Article  CAS  Google Scholar 

  10. M. Mo, J. Tang, M. Zheng, Q. Lu, Y. Chen, H. Guan, Res. Chem. Intermed. 9, 3981 (2013)

    Article  Google Scholar 

  11. J. Zhou, F. Gao, T. Jiao, R. Xing, L. Zhang, Q. Zhang, Q. Peng, Colloids Surf. A 545, 60 (2018)

    Article  CAS  Google Scholar 

  12. Y. Liu, C. Hou, T. Jiao, J. Song, X. Zhang, R. Xing, J. Zhou, L. Zhang, Q. Peng, Nanomaterials 1, 35 (2018)

    Article  Google Scholar 

  13. N. Li, S. Tang, Y. Rao, J. Qi, P. Wang, Y. Jiang, H. Huang, J. Gu, D. Yuan, Electrochim. Acta 270, 330 (2018)

    Article  CAS  Google Scholar 

  14. K. Li, T. Jiao, R. Xing, G. Zou, J. Zhou, L. Zhang, Q. Peng, Sci. China Mater. 5, 61 (2018)

    Google Scholar 

  15. S. Tang, D. Yuan, Y. Rao, N. Li, J. Qi, T. Cheng, Z. Sun, J. Gu, H. Huang, Chem. Eng. J. 337, 446 (2018)

    Article  CAS  Google Scholar 

  16. B. Bethi, S.H. Sonawane, B.A. Bhanvase, S.P. Gumfekar, Chem. Eng. Process. 109, 178 (2016)

    Article  CAS  Google Scholar 

  17. J.M. Herrmann, Top. Catal. 1–4, 49 (2005)

    Article  Google Scholar 

  18. R. Zare-Dorabei, S.M. Ferdowsi, A. Barzin, A. Tadjarodi, Ultrason. Sonochem. 32, 265 (2016)

    Article  CAS  Google Scholar 

  19. D. Tao, Y. Higaki, W. Ma, A. Takahara, Chem. Lett. 11, 1572 (2015)

    Article  Google Scholar 

  20. S. Ou, J.P. Zheng, G.Q. Kong, C.D. Wu, Dalton Trans. 17, 7862 (2015)

    Article  Google Scholar 

  21. B. Zhang, J. Zhang, F. Chen, Res. Chem. Intermed. 4, 375 (2008)

    Article  Google Scholar 

  22. P. Raybaud, M. Digne, R. Iftimie, W. Wellens, P. Euzen, H. Toulhoat, J. Catal. 2, 236 (2001)

    Article  Google Scholar 

  23. J.B. Peri, J. Phys. Chem. 1, 220 (1965)

    Article  Google Scholar 

  24. P. Chen, H.Y. He, Res. Chem. Intermed. 5, 1947 (2014)

    Article  Google Scholar 

  25. A.L.M. de Oliveira, J.M. Ferreira, M.R. Silva, G.S. Braga, L.E. Soledade, M.M.M. Aldeiza, C.A. Paskocimas, S.J. Lima, E. Longo, A.G. de Souza, I.M.G. dos Santos, Dyes Pigm. 1, 210 (2008)

    Article  Google Scholar 

  26. A. Sen, P. Pramanik, J. Eur. Ceram. Soc. 6, 745 (2001)

    Article  Google Scholar 

  27. H. Fu, C. Pan, L. Zhang, Y. Zhu, Mater. Res. Bull. 4, 696 (2007)

    Article  Google Scholar 

  28. W. Cai, J. Yu, B. Cheng, B.L. Su, M. Jaroniec, J. Phys. Chem. C 33, 14739 (2009)

    Article  Google Scholar 

  29. G. Zhan, G. Yongxing, Z. Xiangbo, L. Zhongliang, L. Bing, L. Qiangchun, L. Xuanhua, RSC Adv. 8, 6695 (2016)

    Article  Google Scholar 

  30. T. Shirai, H. Watanabe, M. Fuji, M. Takahashi, 23 (2010)

  31. C. Singh, A. Goyal, S. Singhal, Nanoscale 14, 7959 (2014)

    Article  Google Scholar 

  32. R.D. Shannon, Acta Crystallogr. Sect. A Found. Crystallogr. 5, 751 (1976)

    Google Scholar 

  33. M. Mancheva, R. Iordanova, Y. Dimitriev, J. Alloys Compd. 1, 15 (2011)

    Article  Google Scholar 

  34. C.L. Lu, J.G. Lv, L. Xu, X.F. Guo, W.H. Hou, Y. Hu, H. Huang, Nanotechnology 21, 215604 (2009)

    Article  Google Scholar 

  35. S.C. Shen, Q. Chen, P.S. Chow, G.H. Tan, X.T. Zeng, Z. Wang, R.B. Tan, J. Phys. Chem. C 2, 700 (2007)

    Article  Google Scholar 

  36. M.I. Ahmed, A. Adam, A. Khan, M.N. Siddiqui, Z.H. Yamani, M. Qamar, Mater. Lett. 177, 135 (2016)

    Article  CAS  Google Scholar 

  37. Y. Zheng, S. Ji, H. Liu, M. Li, H. Yang, Particuology 6, 751 (2012)

    Article  Google Scholar 

  38. X. Krokidis, P. Raybaud, A.E. Gobichon, B. Rebours, P. Euzen, H. Toulhoat, J. Phys. Chem. B 22, 5121 (2001)

    Article  Google Scholar 

  39. L. Palmqvist, O. Lyckfeldt, E. Carlström, P. Davoust, A. Kauppi, K. Holmberg, Colloids Surf. A 1–3, 100 (2006)

    Article  Google Scholar 

  40. Z. Wang, J. Gong, J. Ma, J. Xu, RSC Adv. 28, 14708 (2014)

    Article  Google Scholar 

  41. R. Zhao, F. Guo, Y. Hu, H. Zhao, Microporous Mesoporous Mater. 1–3, 212 (2006)

    Article  Google Scholar 

  42. J.A. Mendoza-Nieto, O. Vera-Vallejo, L. Escobar-Alarcón, D. Solís-Casados, T. Klimova, Fuel 110, 268 (2013)

    Article  CAS  Google Scholar 

  43. D.A. Solís-Casados, L. Escobar-Alarcón, T. Klimova, J. Escobar-Aguilar, E. Rodríguez-Castellón, J.A. Cecilia, C. Morales-Ramírez, Catal. Today 271, 35 (2016)

    Article  Google Scholar 

  44. E.I. Ross-Medgaarden, I.E. Wachs, J. Phys. Chem. C 41, 15089 (2007)

    Article  Google Scholar 

  45. M.M. Mohamed, S.A. Ahmed, K.S. Khairou, Appl. Catal. B 150, 63 (2014)

    Article  Google Scholar 

  46. P. Sathishkumar, R. Sweena, J.J. Wu, S. Anandan, Chem. Eng. J. 1, 136 (2011)

    Article  Google Scholar 

  47. Y. Li, C.M. Lousada, P.A. Korzhavyi, J. Appl. Phys. 20, 203514 (2014)

    Article  Google Scholar 

  48. E. Cazzanelli, C. Vinegoni, G. Mariotto, A. Kuzmin, J. Purans, Solid State Ion. 1–4, 67 (1999)

    Article  Google Scholar 

  49. A. Brisdon, Appl. Organomet. Chem. 24, 489 (2010)

    CAS  Google Scholar 

  50. P.K. Pandey, N.S. Bhave, R.B. Kharat, Electrochim. Acta 22, 4659 (2006)

    Article  Google Scholar 

  51. Z.Q. Yu, C.X. Wang, X.T. Gu, C. Li, J. Lumin. 2, 153 (2004)

    Article  Google Scholar 

  52. L. Oster, D. Weiss, N. Kristianpoller, J. Phys. D Appl. Phys. 8, 1732 (1994)

    Article  Google Scholar 

  53. K.H. Lee, J.H. Crawford Jr., Phys. Rev. B. 6, 3217 (1979)

    Article  Google Scholar 

  54. H. Hou, Y. Xie, Q. Yang, Q. Guo, C. Tan, Nanotechnology 6, 741 (2005)

    Article  Google Scholar 

  55. X.Y. Chen, H.S. Huh, S.W. Lee, Nanotechnology 28, 285608 (2007)

    Article  Google Scholar 

  56. Z.Q. Yu, C. Li, N. Zhang, J. Lumin. 1, 29 (2002)

    Article  Google Scholar 

  57. S.M. Chaudhari, P.M. Gawal, P.K. Sane, S.M. Sontakke, P.R. Nemade, Res. Chem. Intermed. 5, 3115 (2018)

    Article  Google Scholar 

  58. T. Montini, V. Gombac, A. Hameed, L. Felisari, G. Adami, P. Fornasiero, Chem. Phys. Lett. 1–3, 113 (2010)

    Article  Google Scholar 

  59. A.L. Linsebigler, G. Lu, J.T. Yates Jr., Chem. Rev. 3, 735 (1995)

    Article  Google Scholar 

  60. K. Gaur, S.C. Verma, H.B. Lal, J. Mater. Sci. 3, 924 (1988)

    Article  Google Scholar 

  61. Z. Liu, X. Zhang, T. Murakami, A. Fujishima, Sol. Energy Mater. Sol. Cells 11, 1434 (2008)

    Article  Google Scholar 

  62. Y. Matsumoto, J. Solid State Chem. 2, 227 (1996)

    Article  Google Scholar 

  63. S. Pourmasoud, A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, J. Mol. Struct. (2018)

  64. L. Ye, X. Liu, Q. Zhao, H. Xie, L. Zan, J. Mater. Chem. A. 31, 8978 (2013)

    Article  Google Scholar 

  65. V. Nagirnyi, M. Kirm, A. Kotlov, A. Lushchik, L. Jönsson, J. Lumin. 102, 597 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The author M. Gnanasekaran gratefully acknowledges the studies supported by the Department of Nanoscience and Nanotechnology, Karunya University and DST-Sophisticated Test and Instrumentation Centre Kochi University, Kochi 682 022, Kerala.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion and preparation of the manuscript. The final version of the manuscript was approved by all authors.

Corresponding authors

Correspondence to Gnanasekaran Munusamy or Krishnakumar Varadharajan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munusamy, G., Varadharajan, K., Narasimhan, S. et al. Investigation of γ-AlOOH and NiWO4-coated boehmite micro/nanostructure under UV/visible light photocatalysis. Res Chem Intermed 44, 7815–7834 (2018). https://doi.org/10.1007/s11164-018-3588-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3588-5

Keywords

Navigation