Skip to main content
Log in

Selective synthesis of 2,6-triad dimethylnaphthalene isomers by disproportionation of 2-methylnaphthalene over mesoporous MCM-41

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

2,6-Dimethylnaphthalene (2,6-DMN) is one of the crucial intermediates for the synthesis of polybutylenenaphthalate and polyethylene naphthalate (PEN). The complex synthesis procedure and the high cost of 2,6-DMN production significantly reduce the commercialisation of PEN even though PEN demonstrates superior properties compared with polyethylene terephthalate. 2,6-DMN can be produced by methylation of 2-methylnaphthalene (2-MN) and/or naphthalene, disproportionation of 2-MN, and/or isomerisation of dimethylnaphthalenes (DMNs). In this study, synthesis of 2,6-triad DMN isomers consisting of 2,6-DMN, 1,6-DMN, and 1,5-DMN have been investigated with the disproportionation of 2-MN over unmodified and Zr-modified mesoporous MCM-41 zeolite catalysts. In contrast to other DMN isomers, both 1,5-DMN and 1,6-DMN can be effectively isomerised to be profitable 2,6-DMN. The disproportionation of 2-MN experiments were carried out in a catalytic fixed-bed reactor in the presence of 1 g of catalyst at a temperature range of 350–500 °C and weight hourly space velocity between 1 to 3 h−1. The results demonstrated that mesoporous MCM-41 zeolite catalyst has a selective pore shape for 2,6-triad DMN isomers, which may allow a decrease in the production cost of 2,6-DMN. Additionally, 2,6-DMN was successfully synthesised by the disproportionation of 2-MN over MCM-41 zeolite catalyst. Furthermore, both the conversion of 2-MN and the selectivity of 2,6-DMN were considerably enhanced by the Zr impregnation on MCM-41.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Kraikul, P. Rangsunvigit, S. Kulprathipanja, Chem. Eng. J. 114(1–3), 73 (2005)

    Article  CAS  Google Scholar 

  2. N. Kraikul, P. Rangsunvigit, S. Kulprathipanja, Adsorption 12(5–6), 317 (2006)

    Article  CAS  Google Scholar 

  3. C. Kumsapaya, K. Bobuatong, P. Khongpracha, Y. Tantirungrotechai, J. Limtrakul, Mech. J. Phys. Chem. C 113(36), 16128 (2009)

    Article  CAS  Google Scholar 

  4. F. Gulec, E.H. Simsek, A. Karaduman, J. Fac. Eng. Archit. Gazi Univ. 31(3), 610 (2016)

    Google Scholar 

  5. F. Güleç, A. Özen, A. Niftaliyeva, A. Aydın, E.H. Şimşek, A. Karaduman, Res. Chem. Intermed. 44(1), 55 (2017)

    Article  Google Scholar 

  6. S.-B. Pu, T. Inui, Appl. Catal. A 146(2), 305 (1996)

    Article  CAS  Google Scholar 

  7. M. Motoyuki, K. Yamamoto, S. Yoshida, S. Yamamoto, A.V. Sapre, J.P. McWilliams, S.P. Donnelly, S.D. Hellring, U.S. Patent 6,018,087, 25 Jan 2000

  8. R. Millini, F. Frigerio, G. Bellussi, G. Pazzuconi, C. Perego, P. Pollesel, U. Romano, J. Catal. 217(2), 298 (2003)

    Article  CAS  Google Scholar 

  9. A. Niftaliyeva, F. Güleç, E.H. Şimşek, M. Güllü, A. Karaduman, Anadolu Univ. J. Sci. Technol. A Appl. Sci. Eng. 16(2), 167 (2015)

    Google Scholar 

  10. A. Niftaliyeva, A. Karaduman, Anadolu Univ. J. Sci. Technol. A Appl. Sci. Eng. 16(2), 275 (2015)

    Google Scholar 

  11. J.-N. Park, J. Wang, C.W. Lee, S.-E. Park, Bull. Korean Chem. Soc. 23(7), 1011 (2002)

    Article  CAS  Google Scholar 

  12. J.-N. Park, J. Wang, S.-I. Hong, C.W. Lee, Appl. Catal. A 292, 68 (2005)

    Article  CAS  Google Scholar 

  13. L. Jin, Y. Fang, H. Hu, Catal. Commun. 7(5), 255 (2006)

    Article  CAS  Google Scholar 

  14. C. Song, J.-P. Shen, K.M. Reddy, L. Sun, L.D. Lillwitz, Stud. Surf. Sci. Catal. 170, 1275 (2007)

    Article  Google Scholar 

  15. C. Zhang, X.W. Guo, Y.N. Wang, X.S. Wang, C.S. Song, Chin. Chem. Lett. 18(10), 1281 (2007)

    Article  CAS  Google Scholar 

  16. L. Jin, X. Zhou, H. Hu, B. Ma, Catal. Commun. 10(3), 336 (2008)

    Article  CAS  Google Scholar 

  17. L. Zhao, H. Wang, M. Liu, X. Guo, X. Wang, C. Song, H. Liu, Chem. Eng. Sci. 63(21), 5298 (2008)

    Article  CAS  Google Scholar 

  18. X. Bai, K. Sun, W. Wu, P. Yan, J. Yang, J. Mol. Catal. A Chem. 314(1), 81 (2009)

    Article  CAS  Google Scholar 

  19. Z. Liang, G. Xinwen, L. Min, W. Xiangsheng, S. Chunshan, Chin. J. Chem. Eng. 18(5), 742 (2010)

    Article  Google Scholar 

  20. I. Ferino, R. Monaci, L. Pedditzi, E. Rombi, V. Solinas, React. Kinet. Catal. Lett. 58(2), 307 (1996)

    Article  CAS  Google Scholar 

  21. W. Wu, W. Wu, O. Kikhtyanin, L. Li, A. Toktarev, A. Ayupov, J. Khabibulin, G. Echevsky, J. Huang, Appl. Catal. A 375(2), 279 (2010)

    Article  CAS  Google Scholar 

  22. T. Matsuda, K. Yogo, Y. Mogi, E. Kikuchi, Chem. Lett. 19(7), 1085 (1990)

    Article  Google Scholar 

  23. E. Kikuchi, Y. Mogi, T. Matsuda, Collect. Czech. Chem. Commun. 57(4), 909 (1992)

    Article  CAS  Google Scholar 

  24. S. Morin, P. Ayrault, S. El Mouahid, N.S. Gnep, M. Guisnet, Appl. Catal. A 159(1–2), 317 (1997)

    Article  CAS  Google Scholar 

  25. E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73(1), 373 (1951)

    Article  CAS  Google Scholar 

  26. G. Fagerlund, Matériaux et Construct. 6(3), 239 (1973)

    Article  CAS  Google Scholar 

  27. J. Van der Mynsbrugge, M. Visur, U. Olsbye, P. Beato, M. Bjørgen, V. Van Speybroeck, S. Svelle, J. Catal. 292, 201 (2012)

    Article  Google Scholar 

  28. Z.-B. Wang, A. Kamo, T. Yoneda, T. Komatsu, T. Yashima, Appl. Catal. A 159(1), 119–132 (1997)

    Article  CAS  Google Scholar 

  29. M.S.A. Salam, M.A. Betiha, S.A. Shaban, A.M. Elsabagh, R.M.A. El-Aal, Egypt. J. Pet. 24(1), 49 (2015)

    Article  Google Scholar 

  30. IUPAC, Compendium of Chemical Terminology, 2nd edn. (Blackwell Scientific Publications, Oxford, 1997)

    Google Scholar 

  31. K. Egeblad, M. Kustova, S.K. Klitgaard, K. Zhu, C.H. Christensen, Microporous Mesoporous Mater. 101(1), 214 (2007)

    Article  CAS  Google Scholar 

  32. T. Zhang, Z. Wang, Q. Zhao, F. Li, W. Xue, J Nanomater 16(1), 170 (2015)

    Google Scholar 

  33. X.-G. Zhao, J.-L. Shi, B. Hu, L.-X. Zhang, Z.-L. Hua, J. Mater. Chem. 13(2), 399 (2003)

    Article  CAS  Google Scholar 

  34. A.M. Yusof, S. Yusan, Synth. React. Inorg. Met. Org. Nano Met. Chem. 46(5), 747 (2016)

    Article  CAS  Google Scholar 

  35. A. Omegna, M. Vasic, J.A. van Bokhoven, G. Pirngruber, R. Prins, Phys. Chem. Chem. Phys. 6(2), 447 (2004)

    Article  CAS  Google Scholar 

  36. Q. Miao, B. Zhao, S. Liu, J. Guo, Y. Tong, J. Cao, Asia Pac. J. Chem. Eng. 11(4), 558 (2016)

    Article  CAS  Google Scholar 

  37. I. Sreedhar, K.S.K. Reddy, K. Raghavan, Kinet. Catal. 50(1), 131 (2009)

    Article  CAS  Google Scholar 

  38. A. Toktarev, L. Malysheva, E. Paukshtis, Kinet. Catal. 51(2), 318 (2010)

    Article  CAS  Google Scholar 

  39. A. Jentys, N.H. Pham, H. Vinek, J. Chem. Soc. Faraday Trans. 92(17), 3287 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK, Project No: 112M297).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Güleç.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güleç, F., Niftaliyeva, A. & Karaduman, A. Selective synthesis of 2,6-triad dimethylnaphthalene isomers by disproportionation of 2-methylnaphthalene over mesoporous MCM-41. Res Chem Intermed 44, 7205–7218 (2018). https://doi.org/10.1007/s11164-018-3551-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3551-5

Keywords

Navigation