Research on Chemical Intermediates

, Volume 44, Issue 11, pp 6469–6478 | Cite as

Biopolymer-layered polysilicate micro/nanocomposite based on chitosan intercalated in magadiite

  • Adel MokhtarEmail author
  • Amal Djelad
  • Abdelkader Bengueddach
  • Mohamed Sassi


On the basis of their high adsorption and cation exchange capacity, swelling potential and low toxicity, layered sodium silicate magadiite (Na–magadiite) is an attractive solid for intercalation of polymers. This study envisages the intercalation of cationic biopolymer chitosan (Chit) in Na–magadiite to prepare a Chit/magadiite micro/nanocomposite. Characterisation of starting-magadiite, pure chitosan and Chit/magadiite were investigated using powder X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy and thermal analysis. XRD confirmed that the chitosan had been intercalated into the interlayer space of magadiite by increasing the basal spacing, d001 from 15.6 Å to 21.45 Å. The presence of characteristic bands of biopolymer and layered silicate in Chit/magadiite were confirmed by FTIR analysis. The thermal stability of micro/nanocomposite was evaluated by thermogravimetry analysis. The results suggested the formation of electrostatic interactions by protonated amine groups with the negatively charged magadiite surface as well as intercalation in the form of a predominant monolayer arrangement of chitosan chains in layered silicate magadiite.


Layered sodium silicate Chitosan Composite Intercalation Thermal analysis 


  1. 1.
    D. Rahangdale, A. Kumar, Biopolymer Grafting (Elsevier, Elsevier, 2018), p. 251CrossRefGoogle Scholar
  2. 2.
    D. Elieh-Ali-Komi, M.R. Hamblin, Int. J. Adv. Res. 4, 3 (2016)Google Scholar
  3. 3.
    M. Rinaudo, Prog. Polym. Sci. 31, 7 (2006)CrossRefGoogle Scholar
  4. 4.
    S. Wang, L. Shen, Y. Tong, L. Chen, I. Phang, P. Lim, T. Liu, Polym. Degrad. Stab. 90, 1 (2005)CrossRefGoogle Scholar
  5. 5.
    M.N.R. Kumar, React. Funct. Polym. 46, 1 (2000)CrossRefGoogle Scholar
  6. 6.
    P. Monvisade, P. Siriphannon, Appl. Clay Sci. 42, 3 (2009)CrossRefGoogle Scholar
  7. 7.
    H.P. Eugster, L.A. Hardie, Lakes (Springer, 1978), p. 237  Google Scholar
  8. 8.
    S.M. Auerbach, K.A. Carrado, P.K. Dutta, Handbook of Layered Materials (CRC Press, Boca Raton, 2004)Google Scholar
  9. 9.
    Y.-R. Wang, S.-F. Wang, L.-C. Chang, Appl. Clay Sci. 33, 1 (2006)CrossRefGoogle Scholar
  10. 10.
    G.G. Almond, R.K. Harris, K.R. Franklin, P. Graham, J. Mater. Chem. 6, 5 (1996)CrossRefGoogle Scholar
  11. 11.
    A. Mokhtar, Z.A.K. Medjhouda, A. Djelad, A. Boudia, A. Bengueddach, M. Sassi, Chem. Pap. 72, 39 (2018)Google Scholar
  12. 12.
    G.L. Paz, E.C. Munsignatti, H.O. Pastore, J. Mol. Catal. A: Chem. 422, 43 (2016)CrossRefGoogle Scholar
  13. 13.
    A. Mokhtar, A. Djelad, A. Boudia, M. Sassi, A. Bengueddach, J. Porous Mater. 27, 1627 (2017)CrossRefGoogle Scholar
  14. 14.
    S. Benkhatou, A. Djelad, M. Sassi, M. Bouchekara, A. Bengueddach, Desalination Water Treat. 57, 20 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Peng, Q. Gao, Z. Du, J. Shi, Appl. Clay Sci. 31, 3 (2006)CrossRefGoogle Scholar
  16. 16.
    A. Giannakas, K. Grigoriadi, A. Leontiou, N.-M. Barkoula, A. Ladavos, Carbohydr. Polym. 108, 103 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Darder, M. Colilla, E. Ruiz-Hitzky, Chem. Mater. 15, 20 (2003)CrossRefGoogle Scholar
  18. 18.
    R.M.B. Vieira, H.O. Pastore, Environ. Sci. Technol. 48, 4 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Ogawa, Y. Ide, M. Mizushima, Chem. Commun. 46, 13 (2010)CrossRefGoogle Scholar
  20. 20.
    M. Ogawa, Y. Takizawa, J. Phys. Chem. B 103, 24 (1999)CrossRefGoogle Scholar
  21. 21.
    R. Celis, M. Adelino, M. Hermosin, J. Cornejo, J. Hazard. Mater. 209, 67 (2012)CrossRefGoogle Scholar
  22. 22.
    Y. Huang, Z. Jiang, W. Schwieger, Chem. Mater. 11, 5 (1999)Google Scholar
  23. 23.
    A.R. Nunes, A.O. Moura, A.G. Prado, J. Therm. Anal. Calorim. 106, 2 (2011)Google Scholar
  24. 24.
    Y. Chen, G. Yu, F. Li, J. Wei, Appl. Clay Sci. 88, 163 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Farhoudian, M. Yadollahi, H. Namazi, Int. J. Biol. Macromol. 82, 273 (2016)CrossRefGoogle Scholar
  26. 26.
    V.A. Pereira, I.N.Q. de Arruda, R. Stefani, Food Hydrocoll. 43, 180 (2015)CrossRefGoogle Scholar
  27. 27.
    S. Bensalem, B. Hamdi, S. Del Confetto, M. Iguer-Ouada, A. Chamayou, H. Balard, R. Calvet, Colloids Surf. A Physicochem. Eng. Asp. 516, 336 (2017)CrossRefGoogle Scholar
  28. 28.
    N. Bleiman, Y.G. Mishael, J. Hazard. Mater. 183, 1 (2010)CrossRefGoogle Scholar
  29. 29.
    P. Sun, P. Li, Y.M. Li, Q. Wei, L.H. Tian, J. Biomed. Mater. Res. Part B Appl. Biomater. 97, 1 (2011)Google Scholar
  30. 30.
    S. Hua, H. Yang, W. Wang, A. Wang, Appl. Clay Sci. 50, 1 (2010)CrossRefGoogle Scholar
  31. 31.
    C. Paluszkiewicz, E. Stodolak, M. Hasik, M. Blazewicz, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 79, 4 (2011)CrossRefGoogle Scholar
  32. 32.
    F. Feng, K.J. Balkus, J. Porous Mater. 10, 1 (2003)Google Scholar
  33. 33.
    H.O. Pastore, M. Munsignatti, A.J. Mascarenhas, Clays Clay Miner. 48, 2 (2000)CrossRefGoogle Scholar
  34. 34.
    X. Qu, A. Wirsen, A.-C. Albertsson, Polymer 41, 12 (2000)Google Scholar
  35. 35.
    W. Tan, Y. Zhang, Y.-S. Szeto, L. Liao, Compost. Sci. Technol. 68, 14 (2008)Google Scholar
  36. 36.
    Y.-S. Han, S.-H. Lee, K.H. Choi, I. Park, J. Phys. Chem. Solids 71, 4 (2010)Google Scholar
  37. 37.
    J.-W. Rhim, S.-I. Hong, H.-M. Park, P.K. Ng, J. Agric. Food Chem. 54, 16 (2006)CrossRefGoogle Scholar
  38. 38.
    N. Belhouchat, H. Zaghouane-Boudiaf, C. Viseras, Appl. Clay Sci. 135, 9 (2017)CrossRefGoogle Scholar
  39. 39.
    F. Leroux, J. Gachon, J.-P. Besse, J. Solid State Chem. 177, 1 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Laboratoire de Chimie des Matériaux (LCM), Faculté des Sciences Exactes et AppliquéesUniversité Oran1OranAlgeria

Personalised recommendations