Graphyne-oxide supported Pd catalyst with ten times higher nitrobenzenes reduction activity than Pd/C



Upon oxidation, a graphyne-like porous carbon-rich network (GYLPC), which is a two-dimensional carbon material consisting of sp- and sp2-hybridized carbon atoms synthesized via alkyne metathesis reactions, yielded GYLPC oxide (GYLPCO). The highly electron-rich conjugated structure provides this new material GYLPC and its oxide GYLPCO with low reduction potentials, which are found to be able to serve as reductants and stabilizers for electroless deposition of well-dispersed Pd metal nanoparticles. The unique Pd/GYLPCO showed extremely high catalytic activity for a broad scope of nitrobenzene reduction reactions with short reaction time and good yields, even in aqueous media under aerobic conditions. We expect that our approach will further boost research on the design and application of graphyne-like functional materials for catalysis.


Graphyne-like porous carbon-rich network Graphyne-like porous carbon-rich network oxide Nitrobenzene reduction Pd nanoparticles 



We acknowledge financial support from the National Natural Science Foundation of China (Nos. 21473113, 21772123 and 51502173), Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No. 2013-57), “Shuguang Program” supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission (14SG40), Program of Shanghai Academic/Technology Research Leader (No. 16XD1402700), National Natural Science Foundation of Shanghai (No. 15ZR1431100), Ministry of Education of China (PCSIRT_16R49) and International Joint Laboratory of Resource Chemistry (IJLRC).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11164_2018_3492_MOESM1_ESM.docx (225 kb)
Supplementary material 1 (DOCX 225 kb)


  1. 1.
    L. Wang, F.-S. Xiao, Green Chem. 17, 24 (2015)CrossRefGoogle Scholar
  2. 2.
    J. Huang, L. Lin, D. Sun, H. Chen, D. Yang, Q. Li, Chem. Soc. Rev. 44, 6330 (2015)CrossRefGoogle Scholar
  3. 3.
    W.J. Stark, P.R. Stoessel, W. Wohlleben, A. Hafner, Chem. Soc. Rev. 44, 5793 (2015)CrossRefGoogle Scholar
  4. 4.
    Y.-B. Huang, J. Liang, X.-S. Wang, R. Cao, Chem. Soc. Rev. 46, 126 (2017)CrossRefGoogle Scholar
  5. 5.
    K.S. Egorova, V.P. Ananikov, Angew. Chem. Int. Ed. 55, 12150 (2016)CrossRefGoogle Scholar
  6. 6.
    K.D. Gilroy, A. Ruditskiy, H.-C. Peng, D. Qin, Y. Xia, Chem. Rev. 116, 10414 (2016)CrossRefGoogle Scholar
  7. 7.
    R.J. White, R. Luque, V.L. Budarin, J.H. Clark, D.J. Macquarrie, Chem. Soc. Rev. 38, 481 (2009)CrossRefGoogle Scholar
  8. 8.
    C.T. Campbell, Acc. Chem. Res. 46, 1712 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Cargnello, V.V.T. Doan-Nguyen, T.R. Gordon, R.E. Diaz, E.A. Stach, R.J. Gorte, P. Fornasiero, C.B. Murray, Science 341, 771 (2013)CrossRefGoogle Scholar
  10. 10.
    L.-B. Sun, X.-Q. Liu, H.-C. Zhou, Chem. Soc. Rev. 44, 5092 (2015)CrossRefGoogle Scholar
  11. 11.
    J.D.A. Pelletier, J.-M. Basset, Acc. Chem. Res. 49, 664 (2016)CrossRefGoogle Scholar
  12. 12.
    P.R. Unwin, A.G. Güell, G. Zhang, Acc. Chem. Res. 49, 2041 (2016)CrossRefGoogle Scholar
  13. 13.
    L. He, F. Weniger, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 55, 12582 (2016)CrossRefGoogle Scholar
  14. 14.
    N. Wang, J. He, Z. Tu, Z. Yang, F. Zhao, X. Li, C. Huang, K. Wang, T. Jiu, Y. Yi, Y. Li, Angew. Chem. Int. Ed. 56, 10740 (2017)CrossRefGoogle Scholar
  15. 15.
    S. Zhang, H. Du, J. He, C. Huang, H. Liu, G. Cui, Y. Li, ACS Appl. Mater. Interfaces 8, 8467 (2016)CrossRefGoogle Scholar
  16. 16.
    H. Du, H. Yang, C. Huang, J. He, H. Liu, Y. Li, Nano Energy 22, 615 (2016)CrossRefGoogle Scholar
  17. 17.
    Y. Li, J. Tang, X. Cui, J. Lee, Acta Phys. Chim. Sin. 34, 1080 (2018)Google Scholar
  18. 18.
    B. Wu, M. Li, S. Xiao, Y. Qu, X. Qiu, T. Liu, F. Tian, H. Li, S. Xiao, Nanoscale 9, 11939 (2017)CrossRefGoogle Scholar
  19. 19.
    H. Qi, P. Yu, Y. Wang, G. Han, H. Liu, Y. Yi, Y. Li, L. Mao, J. Am. Chem. Soc. 137, 5260 (2015)CrossRefGoogle Scholar
  20. 20.
    P. Wu, P. Du, H. Zhang, C. Cai, Phys. Chem. Chem. Phys. 17, 1441 (2015)CrossRefGoogle Scholar
  21. 21.
    D.W. Ma, T. Li, Q. Wang, G. Yang, C. He, B. Ma, Z. Lu, Carbon 95, 756 (2015)CrossRefGoogle Scholar
  22. 22.
    X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie, X. Wang, J. Am. Chem. Soc. 133, 3693 (2011)CrossRefGoogle Scholar
  23. 23.
    W. Xu, X. Liu, J. Ren, P. Zhang, Y. Wang, Y. Guo, Y. Guo, G. Lu, Catal. Commun. 11, 721 (2010)CrossRefGoogle Scholar
  24. 24.
    M. Gholinejad, F. Zareh, C. Nájera, Appl. Organomet. Chem. 32, e3984 (2017)CrossRefGoogle Scholar
  25. 25.
    J. He, S.Y. Ma, P. Zhou, C.X. Zhang, C. He, L.Z. Sun, J. Phys. Chem. C 116, 26313 (2012)CrossRefGoogle Scholar
  26. 26.
    F. Yang, C. Chi, C. Wang, Y. Wang, Y. Li, Green Chem. 18, 4254 (2016)CrossRefGoogle Scholar
  27. 27.
    H. Goksu, H. Sert, B. Kilbas, F. Sen, Curr. Org. Chem. 21, 794 (2017)CrossRefGoogle Scholar
  28. 28.
    R. Nazir, P. Fageria, M. Basu, S. Gangopadhyay, S. Pande, New J. Chem. 41, 9658 (2017)CrossRefGoogle Scholar
  29. 29.
    Y. Deng, Y. Cai, Z. Sun, J. Liu, C. Liu, J. Wei, W. Li, C. Liu, Y. Wang, D. Zhao, J. Am. Chem. Soc. 132, 8466 (2010)CrossRefGoogle Scholar
  30. 30.
    J. Ge, Q. Zhang, T. Zhang, Y. Yin, Angew. Chem. Int. Ed. 47, 8924 (2008)CrossRefGoogle Scholar
  31. 31.
    Y. Dai, S.J. Liu, N.F. Zheng, J. Am. Chem. Soc. 136, 5583 (2014)CrossRefGoogle Scholar
  32. 32.
    N. Lu, W. Chen, G.Y. Fang, B. Chen, K.Q. Yang, Y. Yang, Z.C. Wang, S.M. Huang, Y.D. Li, Chem. Mater. 26, 2453 (2014)CrossRefGoogle Scholar
  33. 33.
    K. Halder, G. Bengtson, V. Filiz, V. Abetz, Appl. Catal. A Gen. 555, 178 (2018)CrossRefGoogle Scholar
  34. 34.
    Y.-J. Kim, R. Ma, D.A. Reddy, T.K. Kim, Appl. Surf. Sci. 357, 2112 (2015)CrossRefGoogle Scholar
  35. 35.
    S. Mahata, A. Sahu, P. Shukla, A. Rai, M. Singh, V.K. Rai, New J. Chem. 42, 2067 (2018)CrossRefGoogle Scholar
  36. 36.
    S. Doherty, J.G. Knight, T. Backhouse, A. Bradford, F. Saunders, R.A. Bourne, T.W. Chamberlain, R. Stones, A. Clayton, K. Lovelock, Catal. Sci. Technol. 8, 1454 (2018)CrossRefGoogle Scholar
  37. 37.
    R.V. Jagadeesh, A.E. Surkus, H. Junge, M.M. Pohl, J. Radnik, J. Rabeah, H.M. Huan, V. Schunemann, A. Bruckner, M. Beller, Science 342, 1073 (2013)CrossRefGoogle Scholar
  38. 38.
    Z.Z. Wei, J. Wang, S.J. Mao, D.F. Su, H.Y. Jin, Y.H. Wang, F. Xu, H.R. Li, Y. Wang, ACS Catal. 5, 4783 (2015)CrossRefGoogle Scholar
  39. 39.
    A. Corma, P. Concepcion, P. Serna, Angew. Chem. Int. Ed. 46, 7266 (2007)CrossRefGoogle Scholar
  40. 40.
    H. Wiener, J. Blum, Y. Sasson, J. Org. Chem. 56, 4481 (1991)CrossRefGoogle Scholar
  41. 41.
    K. Shimizu, Y. Miyamoto, T. Kawasaki, T. Tanji, Y. Tai, A. Satsuma, J. Phys. Chem. C 113, 17803 (2009)CrossRefGoogle Scholar
  42. 42.
    P. Serna, A. Corma, ACS Catal. 5, 7114 (2015)CrossRefGoogle Scholar
  43. 43.
    Z. Lu, S. Li, P. Lv, C. He, D. Ma, Z. Yang, Appl. Surf. Sci. 360, 1 (2016)CrossRefGoogle Scholar
  44. 44.
    G. Chen, C. Xu, X. Huang, J. Ye, L. Gu, G. Li, Z. Tang, B. Wu, H. Yang, Z. Zhao, Z. Zhou, G. Fu, N. Zheng, Nat. Mater. 15, 564 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.The Education Ministry Key Laboratory of Resource Chemistry, International Joint Laboratory of Resource ChemistryShanghai Normal UniversityShanghaiChina

Personalised recommendations