Skip to main content
Log in

“Seems Bad Turns Good” – traces of precursor in dicationic ionic liquid lead to analytical application

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

We explored a geminal dicationic ionic liquid (DCIL), 1′-(propane-1,3-diyl)bis(4-aminopyridin-1-ium) dibromide, [C3(Amp)2][Br]2, as a fluorescent probe for detection of hydroquinone (HQ). The DCIL, undesirably, was found to incorporate trace precursor (4-aminopyridine). The impurity in DCIL was identified by nuclear magnetic resonance (NMR) spectroscopy and quantified by high-performance liquid chromatography. Surprisingly, trace precursor associated with the sensor actually assisted the quenching process by providing essential in situ mild alkaline environment. The proposed detection method depends on significant quenching of fluorescence of DCIL with increasing concentration of HQ. A plausible quenching mechanism involving photoinduced charge transfer is discussed. The DCIL probe offers a wide detection range of 1–800 µM with detection limit of 0.38 µM for HQ. These results highlight the concept of beneficial intentional doping of impurities in sensing material that does not alter its inherent physicochemical properties but might improve its performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9

Similar content being viewed by others

References

  1. T. Payagala, J. Huang, Z.S. Breitbach, P.S. Sharma, D.W. Armstrong, Chem. Mater. 19, 5848 (2007)

    Article  CAS  Google Scholar 

  2. J.L. Anderson, R.F. Ding, A. Ellern, D.W. Armstrong, J. Am. Chem. Soc. 127, 593 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. H. Shirota, T. Mandai, H. Fukazawa, T. Kato, J. Chem. Eng. Data 56, 2453 (2011)

    Article  CAS  Google Scholar 

  4. R. Fareghi-Alamdari, F.G. Zamani, M. Shekarriz, J. Mol. Liq. 211, 831 (2015)

    Article  CAS  Google Scholar 

  5. S.B. Aher, P.R. Bhagat, Res. Chem. Intermed. 42, 5587 (2016)

    Article  CAS  Google Scholar 

  6. J.-C. Chang, W.-Y. Ho, I.W. Sun, Y.-L. Tung, M.-C. Tsui, T.-Y. Wu, S.-S. Liang, Tetrahedron 66, 6150 (2010)

    Article  CAS  Google Scholar 

  7. C. Zafer, K. Ocakoglu, C. Ozsoy, S. Icli, Electrochim. Acta 54, 5709 (2009)

    Article  CAS  Google Scholar 

  8. Y. Zhang, P. Yu, Y. Luo, Chem. Eng. J. 214, 355 (2013)

    Article  CAS  Google Scholar 

  9. M. Sun, J. Feng, X. Wang, H. Duan, L. Li, C. Luo, J. Sep. Sci. 37, 2153 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. M. Qi, D.W. Armstrong, Anal. Bioanal. Chem. 388, 889 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. L. Qiao, H. Li, Y. Shan, S. Wang, X. Shi, X. Lu, G. Xu, J. Chromatogr. A 1330, 40 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. D. Fang, J. Yang, C. Jiao, ACS Catal. 1, 42 (2011)

    Article  CAS  Google Scholar 

  13. M. Fan, J. Yang, P. Jiang, P. Zhang, S. Li, RSC Adv. 3, 752 (2013)

    Article  CAS  Google Scholar 

  14. F. Pagano, C. Gabler, P. Zare, M. Mahrova, N. Doerr, R. Bayon, X. Fernandez, W.H. Binder, M. Hernaiz, E. Tojo, A. Igartua, P.I. Mech, Eng. J-J. Eng. Tribol. 226, 952 (2012)

    CAS  Google Scholar 

  15. M. Mahrova, F. Pagano, V. Pejakovic, A. Valea, M. Kalin, A. Igartua, E. Tojo, Tribol. Int. 82, 245 (2015)

    Article  CAS  Google Scholar 

  16. S. Li, K.L. Van Aken, J.K. McDonough, G. Feng, Y. Gogotsi, P.T. Cummings, J. Phys. Chem. C 118, 3901 (2014)

    Article  CAS  Google Scholar 

  17. S. Li, P. Zhang, P.F. Fulvio, P.C. Hillesheim, G. Feng, S. Dai, P.T. Cummings, J. Phys. Condens. Matter 26 (2014)

    PubMed  Google Scholar 

  18. R. Costa, C.M. Pereira, A. Fernando Silva, Electrochim. Acta 116, 306 (2014)

    Article  CAS  Google Scholar 

  19. A.H. Jadhav, A. Chinnappan, R.H. Patil, S.V. Kostjuk, H. Kim, Chem. Eng. J. 243, 92 (2014)

    Article  CAS  Google Scholar 

  20. W. Liu, Y. Wang, W. Li, Y. Yang, N. Wang, Z. Song, X.-F. Xia, H. Wang, Catal. Lett. 145, 1080 (2015)

    Article  CAS  Google Scholar 

  21. D. Zhao, M. Liu, J. Zhang, J. Li, P. Ren, Chem. Eng. J. 221, 99 (2013)

    Article  CAS  Google Scholar 

  22. C. Rizzo, F. D’Anna, S. Marullo, R. Noto, J. Org. Chem. 79, 8678 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. X.X. Han, D.W. Armstrong, Org. Lett. 7, 4205 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. D.V. Jawale, U.R. Pratap, A.A. Mulay, J.R. Mali, R.A. Mane, J. Chem. Sci. 123, 645 (2011)

    Article  CAS  Google Scholar 

  25. A. Chinnappan, H. Kim, Chem. Eng. J. 187, 283 (2012)

    Article  CAS  Google Scholar 

  26. T.S. Jo, J.J. Koh, H. Han, P.K. Bhowmik, Mater. Chem. Phys. 139, 901 (2013)

    Article  CAS  Google Scholar 

  27. X. Yang, J. Wang, W. Zou, J. Wu, Korean J. Chem. Eng. 32, 2369 (2015)

    Article  CAS  Google Scholar 

  28. Y. Wang, H. Ye, G. Zuo, J. Luo, J. Mol. Liq. 212, 418 (2015)

    Article  CAS  Google Scholar 

  29. P.M. Hudnall, Hydroquinone, in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH Verlag, Weinheim, Germany, 2000)

  30. H. Fiege, H.-W. Voges, T. Hamamoto, S. Umemura, T. Iwata, H. Miki, Y. Fujita, H.-J. Buysch, D. Garbe, W. Paulus, Phenol Derivatives, in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH Verlag, Weinheim, Germany, 2000)

  31. H. Zhang, X. Bo, L. Guo, Sens. Actuators B Chem. 220, 919 (2015)

    Article  CAS  Google Scholar 

  32. L. Gianfreda, G. Iamarino, R. Scelza, M.A. Rao, Biocatal. Biotransform. 24, 177 (2006)

    Article  CAS  Google Scholar 

  33. J. Yuan, W. Guo, E. Wang, Anal. Chem. 80, 1141 (2008)

    Article  CAS  PubMed  Google Scholar 

  34. J. Fan, T. Zhang, J. Sun, M. Fan, J. Fluoresc. 17, 113 (2007)

    Article  CAS  PubMed  Google Scholar 

  35. H. Yin, Q. Zhang, Y. Zhou, Q. Ma, T. Liu, L. Zhu, S. Ai, Electrochim. Acta 56, 2748 (2011)

    Article  CAS  Google Scholar 

  36. Y. Wang, Y. Xiong, J. Qu, J. Qu, S. Li, Sens. Actuators B Chem. 223, 501 (2016)

    Article  CAS  Google Scholar 

  37. A. Stark, P. Behrend, O. Braun, A. Mueller, J. Ranke, B. Ondruschka, B. Jastorff, Green Chem. 10, 1152 (2008)

    Article  CAS  Google Scholar 

  38. C.C. Cassol, G. Ebeling, B. Ferrera, J. Dupont, Adv. Synth. Catal. 348, 243 (2006)

    Article  CAS  Google Scholar 

  39. S. Aparicio, M. Atilhan, F. Karadas, Ind. Eng. Chem. Res. 49, 9580 (2010)

    Article  CAS  Google Scholar 

  40. D.-N. Cai, K. Huang, Y.-L. Chen, X.-B. Hu, Y.-T. Wu, Ind. Eng. Chem. Res. 53, 6871 (2014)

    Article  CAS  Google Scholar 

  41. S.-J. Li, Y. Xing, G.-F. Wang, Microchim. Acta 176, 163 (2012)

    Article  CAS  Google Scholar 

  42. Y.P. Ding, W.L. Liu, Q.S. Wu, X.G. Wang, J. Electroanal. Chem. 575, 275 (2005)

    Article  CAS  Google Scholar 

  43. T.C. Canevari, L.T. Arenas, R. Landers, R. Custodio, Y. Gushikem, Analyst 138, 315 (2013)

    Article  CAS  PubMed  Google Scholar 

  44. W. Si, W. Lei, Y. Zhang, M. Xia, F. Wang, Q. Hao, Electrochim. Acta 85, 295 (2012)

    Article  CAS  Google Scholar 

  45. H.-L. Guo, S. Peng, J.-H. Xu, Y.-Q. Zhao, X. Kang, Sens. Actuators B Chem. 193, 623 (2014)

    Article  CAS  Google Scholar 

  46. D.-M. Zhao, X.-H. Zhang, L.-J. Feng, L. Jia, S.-F. Wang, Colloids Surf. B Biointerfaces 74, 317 (2009)

    Article  CAS  PubMed  Google Scholar 

  47. P. Nagaraja, R.A. Vasantha, K.R. Sunitha, Talanta 55, 1039 (2001)

    Article  CAS  PubMed  Google Scholar 

  48. C.B. Jordan, Anal. Chem. 29, 1097 (1957)

    Article  CAS  Google Scholar 

  49. S.C. Moldoveanu, M. Kiser, J. Chromatogr. A 1141, 90 (2007)

    Article  CAS  PubMed  Google Scholar 

  50. T.Y. Xie, Q.W. Liu, Y.R. Shi, Q.Y. Liu, J. Chromatogr. A 1109, 317 (2006)

    Article  CAS  PubMed  Google Scholar 

  51. P. Ni, H. Dai, Z. Li, Y. Sun, J. Hu, S. Jiang, Y. Wang, Z. Li, Talanta 144, 258 (2015)

    Article  CAS  PubMed  Google Scholar 

  52. Y. He, J. Sun, D. Feng, H. Chen, F. Gao, L. Wang, Biosens. Bioelectron. 74, 418 (2015)

    Article  CAS  PubMed  Google Scholar 

  53. X. Guo, L. Deng, J. Wang, RSC Adv. 3, 401 (2013)

    Article  CAS  Google Scholar 

  54. H. Huang, M. Xu, Y. Gao, G. Wang, X. Su, Talanta 86, 164 (2011)

    Article  CAS  PubMed  Google Scholar 

  55. R. Li, C. Liu, M. Ma, Z. Wang, G. Zhan, B. Li, X. Wang, H. Fang, H. Zhang, C. Li, Electrochim. Acta 95, 71 (2013)

    Article  CAS  Google Scholar 

  56. P.P. Salvi, A.M. Mandhare, A.S. Sartape, D.K. Pawar, S.H. Han, S.S. Kolekar, C. R. Chimie 14, 878 (2011)

    Article  CAS  Google Scholar 

  57. A. Shrivastava, V. Gupta, Chron. Young Sci. 2, 21 (2011)

    Article  Google Scholar 

  58. S.W. Casteel, B.R. Thomas, J. Vet. Diagn. Invest. 2, 132 (1990)

    Article  CAS  PubMed  Google Scholar 

  59. S.K. Patil, D.V. Awale, M.M. Vadiyar, S.A. Patil, S.C. Bhise, A.H. Gore, G.B. Kolekar, J.H. Kim, S.S. Kolekar, Chem. Select 2, 4124 (2017)

    CAS  Google Scholar 

  60. S.K. Patil, S.A. Patil, M.M. Vadiyar, D.V. Awale, A.S. Sartape, L.S. Walekar, G.B. Kolekar, U.V. Ghorpade, J.H. Kim, S.S. Kolekar, J. Mol. Liq. 244, 39 (2017)

    Article  CAS  Google Scholar 

  61. K. Acharyya, P.S. Mukherjee, Chem. Commun. 50, 15788 (2014)

    Article  CAS  Google Scholar 

  62. J.R. Lakowicz, Principles of fluorescence spectroscopy, 3rd edn. (Springer, New York, 2006)

    Book  Google Scholar 

  63. Z. Li, R. Sun, Y. Ni, S. Kokot, Anal. Methods 6, 7420 (2014)

    Article  CAS  Google Scholar 

  64. V.D. Suryawanshi, A.H. Gore, P.R. Dongare, P.V. Anbhule, S.R. Patil, G.B. Kolekar, Spectrochim. Acta Part A 114, 681 (2013)

    Article  CAS  Google Scholar 

  65. L. Ma, G.-C. Zhao, Int. J. Electrochem. 2012, 8 (2012)

    Article  CAS  Google Scholar 

  66. D.-H. Deng, S.-J. Li, M.-J. Zhang, X.-N. Liu, M.-M. Zhao, L. Liu, Anal. Methods 5, 2536 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.K.P. and M.M.V. under the UGC-BSR Meritorious Students fellowship and S.C.B. under RGNF are grateful to the University Grants Commission (UGC), New Delhi, India, for financial support and instrument facilities at the Department of Chemistry, Shivaji University, Kolhapur. This work is partially supported by Human Resources Development program (no. 20124010203180) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant, funded by the Korea Government Ministry of Trade, Industry, and Energy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Govind B. Kolekar, Jin H. Kim or Sanjay S. Kolekar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11164_2018_3489_MOESM1_ESM.docx

Electronic Supplementary Material includes 1H and 13C NMR spectra for DCIL-1 (Fig. S1-S2); HPLC method for detection of trace 4-Amp; Chromatograms of 4-Amp and DCIL-1 obtained from HPLC analysis (Fig. S3); UV–Vis absorption spectra of 0.01 mol L−1 DCIL-1 in presence of a series of different concentrations of HQ (Fig. S4); Absorbance spectrum of HQ and emission spectrum of DCIL-1 to check the possibility of spectral overlap (Fig. S5); Fluorescence spectra of 0.01 mol L−1 DCIL-1 in presence of different concentrations (10–1000 µM) of p-benzoquinone (BQ) (Fig. S6). (DOCX 1214 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.K., Bhise, S.C., Awale, D.V. et al. “Seems Bad Turns Good” – traces of precursor in dicationic ionic liquid lead to analytical application. Res Chem Intermed 44, 6267–6282 (2018). https://doi.org/10.1007/s11164-018-3489-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3489-7

Keywords

Navigation