Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 7, pp 4577–4594 | Cite as

Characterization and photocatalytic properties of lutetium ion-doped titanium dioxide photocatalyst

  • Nahomi Sakaguchi Miyamoto
  • Ryo Miyamoto
  • Elio Giamello
  • Tsutomu Kurisaki
  • Hisanobu Wakita
Article
  • 66 Downloads

Abstract

Lutetium-doped titanium dioxide (Lu-TiO2) was synthesized using a sol–gel method. The obtained compounds were characterized by X-ray diffraction and electron paramagnetic resonance. The photocatalytic decomposition of adenosine 5′-triphosphate (ATP) under UV irradiation was investigated to estimate the effect of the doped lutetium. Our results showed that the Lu-TiO2 nanoparticles have higher photoactivity than an undoped TiO2. Furthermore, the role of lutetium in Lu-TiO2, the structure of the photoreaction site on Lu-TiO2 and the reaction mechanism are also discussed.

Keywords

Lutetium-doped titanium dioxide Sol–gel Photocatalytic decomposition Electron paramagnetic resonance 

Notes

Acknowledgements

Support for the X-band EPR spectrometer and analytical studies was provided by staff of the Dipartmento di Chimica in Universita di Torino. The authors wish to thank Prof. Masakazu Anpo in Osaka Prefecture University for his kindly technical supports. Thanks also go to Prof. Hirofumi Tomita in the Graduate School of Medicine Cardiology and Nephrology, Hirosaki University, who always give us understanding for this study.

References

  1. 1.
    S.N. Frank, A.J. Bard, J. Phys. Chem. 81, 1484 (1977)CrossRefGoogle Scholar
  2. 2.
    B. Kraeutler, A.J. Bard, J. Am. Chem. Soc. 100, 4317 (1978)CrossRefGoogle Scholar
  3. 3.
    C.D. Jaeger, A.J. Bard, J. Phys. Chem. 83, 3146 (1979)CrossRefGoogle Scholar
  4. 4.
    A.R. Gonzalez-Elipe, G. Munuera, J. Soria, J. Chem. Soc. Faraday Trans. 1(75), 748 (1979)CrossRefGoogle Scholar
  5. 5.
    M. Fujihira, Y. Satoh, T. Osa, Nature (London, U. K.) 293, 206 (1981)CrossRefGoogle Scholar
  6. 6.
    I. Izumi, F.-R.F. Fan, A.J. Bard, J. Phys. Chem. 85, 218 (1981)CrossRefGoogle Scholar
  7. 7.
    M.A. Fox, C.-C. Chen, J. Am. Chem. Soc. 103, 6757 (1981)CrossRefGoogle Scholar
  8. 8.
    S. Teratani, J. Nakamichi, K. Taya, K. Tanaka, Bull. Chem. Soc. Jpn. 55, 1688 (1982)CrossRefGoogle Scholar
  9. 9.
    E. Borgarello, J. Desilvestro, M. Grätzel, E. Pelizzetti, Helv. Chim. Acta 66, 1827 (1983)CrossRefGoogle Scholar
  10. 10.
    M. Barbeni, E. Pramauro, E. Pelizzett, Nouv. J. Chim. 8, 292 (1984)Google Scholar
  11. 11.
    D. Bahnemann, A. Henglein, J. Lilie, L. Spanhel, J. Phys. Chem. 88, 709 (1984)CrossRefGoogle Scholar
  12. 12.
    M. Barbeni, E. Pramauro, E. Pelizzetti, E. Brogarello, M. Grätzel, N. Serpone, Nouv. J. Chim. 8, 547 (1984)Google Scholar
  13. 13.
    A.P. Hong, D.W. Bahnemann, M.R. Hoffmann, J. Phys. Chem. 91, 2109 (1987)CrossRefGoogle Scholar
  14. 14.
    G.T. Brown, J.R. Darwent, J. Phys. Chem. 88, 4955 (1984)CrossRefGoogle Scholar
  15. 15.
    H. Hidaka, H. Kubota, M. Grätzel, E. Pelizzetti, N. Serpone, Nouv. J. Chim. 9, 67 (1985)Google Scholar
  16. 16.
    K. Okamoto, Y. Yamamoto, H. Tanaka, A. Itaya, Bull. Chem. Soc. Jpn. 58, 2023 (1985)CrossRefGoogle Scholar
  17. 17.
    E. Pelizzetti, M. Barbeni, E. Pramauro, N. Serpone, E. Borgarello, M. Jamieson, H. Hidaka, Chim. Ind. (Milan, Italy) 67, 623 (1985)Google Scholar
  18. 18.
    M. Anpo, T. Shima, Y. Kubokawa, Chem. Lett. 14, 1799 (1985)CrossRefGoogle Scholar
  19. 19.
    M. Barbeni, E. Pramauro, E. Pelizzetti, E. Borgarello, N. Serpone, M.A. Jamieson, Chemosphere 15, 1913 (1986)CrossRefGoogle Scholar
  20. 20.
    R.W. Matthews, Water Res. 20, 569 (1986)CrossRefGoogle Scholar
  21. 21.
    N. Serpone, E. Borgarello, R. Harris, P. Cahill, M. Borgarello, E. Pelizzetti, Sol. Energy Mater. 14, 121 (1986)CrossRefGoogle Scholar
  22. 22.
    R. Matthews, Aust. J. Chem. 40, 667 (1987)CrossRefGoogle Scholar
  23. 23.
    S. Tunesi, M.A. Anderson, Chemosphere 16, 1447 (1987)CrossRefGoogle Scholar
  24. 24.
    A. Heller, Y. Degani, D.W. Johnson Jr., P.K. Gallagher, J. Phys. Chem. 91, 5987 (1987)CrossRefGoogle Scholar
  25. 25.
    R.W. Matthews, J. Phys. Chem. 91, 3328 (1987)CrossRefGoogle Scholar
  26. 26.
    H. Al-Ekabi, N. Serpone, J. Phys. Chem. 92, 5726 (1988)CrossRefGoogle Scholar
  27. 27.
    J. Cunningham, S. Srijaranai, J. Photochem. Photobiol. A 43, 329 (1988)CrossRefGoogle Scholar
  28. 28.
    C.S. Turchi, D.F. Ollis, J. Phys. Chem. 92, 6852 (1988)CrossRefGoogle Scholar
  29. 29.
    A. Henglein, Top. Curr. Chem. 92, 5726 (1988)Google Scholar
  30. 30.
    C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Environ. Sci. Technol. 22, 798 (1988)CrossRefPubMedGoogle Scholar
  31. 31.
    J.R. Harbour, M.L. Hair, J. Phys. Chem. 83, 652 (1979)CrossRefGoogle Scholar
  32. 32.
    E.M. Ceresa, L. Burlamacchi, M. Visca, J. Mater. Sci. 18, 289 (1983)CrossRefGoogle Scholar
  33. 33.
    V. Brezova, A. Stasko, L. Lapcik Jr., J. Photochem. Photobiol. A 59, 115 (1991)CrossRefGoogle Scholar
  34. 34.
    K.T. Ranjit, H. Cohen, I. Willner, S. Bossmann, A.M. Braun, J. Mater. Sci. 34, 5273 (1999)CrossRefGoogle Scholar
  35. 35.
    Y. Mao, C. Schöneich, K.-D. Asmus, J. Phys. Chem. 95, 10080 (1991)CrossRefGoogle Scholar
  36. 36.
    K.T. Ranjit, E. Joselevich, I. Willner, J. Photochem. Photobiol. A 99, 185 (1996)CrossRefGoogle Scholar
  37. 37.
    M.A. Fox, M.T. Dulay, Chem. Rev. 93, 341 (1993)CrossRefGoogle Scholar
  38. 38.
    T. Moritz, J. Reiss, K. Diesner, D. Su, A. Chemseddine, J. Phys. Chem. B 101, 8052 (1997)CrossRefGoogle Scholar
  39. 39.
    A. Sclafani, J.M. Herrman, J. Phys. Chem. 100, 13655 (1996)CrossRefGoogle Scholar
  40. 40.
    C. Kormann, D.W. Bahnemann, M.R. Hoffmann, J. Phys. Chem. 92, 5196 (1988)CrossRefGoogle Scholar
  41. 41.
    D.D. Beck, R.W. Siegel, J. Mater. Res. 7, 2840 (1992)CrossRefGoogle Scholar
  42. 42.
    T. Ohno, D. Haga, K. Fujihara, K. Kaizaki, M. Matsumura, J. Phys. Chem. B 101, 6415 (1997)CrossRefGoogle Scholar
  43. 43.
    D.C. Hurum, A.G. Agrios, K.A. Gray, T. Rajh, M.C. Thurnauer, J. Phys. Chem. B 107, 4545 (2003)CrossRefGoogle Scholar
  44. 44.
    J. Soria, J.C. Conesa, V. Auguliaro et al., J. Phys. Chem. 95, 274 (1991)CrossRefGoogle Scholar
  45. 45.
    Z. Luo, Q.H. Gao, J. Photochem. Photobiol. A Chem. 63, 367 (1992)CrossRefGoogle Scholar
  46. 46.
    W. Choi, A. Thermin, M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994)CrossRefGoogle Scholar
  47. 47.
    N. Sakaguchi, S. Matsuo, T. Kurisaki, T. Matsuo, H. Wakita, Res. Chem. Intermed. 32, 95 (2006)CrossRefGoogle Scholar
  48. 48.
    N. Sakaguchi, K. Yamada, S. Matsuo, T. Matsuo, H. Wakita, Res. Chem. Intermed. 32, 171 (2006)CrossRefGoogle Scholar
  49. 49.
    N. Sakaguchi, S. Matsuo, K. Yamada, T. Matsuo, H. Wakita, Res. Chem. Intermed. 30, 879 (2004)CrossRefGoogle Scholar
  50. 50.
    R.F. Howe, M. Grätzel, J. Phys. Chem. 91, 3906 (1987)CrossRefGoogle Scholar
  51. 51.
    R.F. Howe, M. Grätzel, J. Phys. Chem. 89, 4495 (1985)CrossRefGoogle Scholar
  52. 52.
    O.I. Micic, Y. Zhang, K.R. Cromack, A.D. Trifunac, M.C. Thurnauer, J. Phys. Chem. 97, 7277 (1993)CrossRefGoogle Scholar
  53. 53.
    Y. Nakaoka, Y. Nosaka, J. Photchem. Photobiol. A 110, 299 (1997)CrossRefGoogle Scholar
  54. 54.
    K. Ishibashi, Y. Nosaka, K. Hashimoto, A. Fujishima, J. Phys. Chem. B 102, 2117 (1998)CrossRefGoogle Scholar
  55. 55.
    T. Hirakawa, Y. Nakaoka, J. Nishino, Y. Nosaka, J. Phys. Chem. B 103, 4399 (1999)CrossRefGoogle Scholar
  56. 56.
    T. Hirakawa, H. Kominami, B. Ohtani, Y. Nosaka, J. Phys. Chem. B 105, 6993 (2001)CrossRefGoogle Scholar
  57. 57.
    Y. Cong, B. Tian, J. Zhang, Appl. Catal. B 101, 376 (2011)CrossRefGoogle Scholar
  58. 58.
    Q. Yi, Y. Zhou, M. Xing, J. Zhang, Res. Chem. Intermed. 42, 4181 (2016)CrossRefGoogle Scholar
  59. 59.
    Y. Zhou, Y. Liu, P. Liu, W. Zhang, M. Xing, J. Zhang, Appl. Catal. B 170–171, 66 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Nahomi Sakaguchi Miyamoto
    • 1
    • 4
  • Ryo Miyamoto
    • 2
  • Elio Giamello
    • 3
  • Tsutomu Kurisaki
    • 1
  • Hisanobu Wakita
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceFukuoka UniversityFukuokaJapan
  2. 2.Graduate School of Science and TechnologyHirosaki UniversityHirosakiJapan
  3. 3.Diparimento di ChimicaUniversita di TorinoTurinItaly
  4. 4.Department of Respiratory Medicine, Graduate School of Medicine Cardiology and NephrologyHirosaki UniversityHirosakiJapan

Personalised recommendations