Research on Chemical Intermediates

, Volume 44, Issue 9, pp 5439–5453 | Cite as

Conversion of biomass-derived carbohydrates into 5-hydroxymethylfurfural catalyzed by sulfonic acid-functionalized carbon material with high strong-acid density in γ-valerolactone

  • Feng Huang
  • Wenzhi Li
  • Tingwei Zhang
  • Dawei Li
  • Qiyu Liu
  • Xifeng Zhu
  • Longlong Ma


A carbonaceous solid acid catalyst with high strong-acid density was synthesized by facile functionalization of a biomass-derived mesoporous carbon with benzenesulfonic acid. The catalyst was characterized by using Fourier transform infrared spectroscopy, elemental analysis, X-ray photoelectron spectroscopy, transmission electron microscopy, and N2 adsorption–desorption. The carbonaceous solid catalyst containing Brønsted acid sites was used for the production of 5-hydroxymethylfurfural (HMF) from hexoses such as fructose, glucose, and cellulose in γ-valerolactone (GVL)-H2O mixture. By reaction at 130 °C for 20 min using fructose as a feedstock, an HMF yield 78.1% was achieved. The catalytic performance of the catalyst in conversion of fructose into HMF hardly changed over seven cycles, demonstrating that the catalyst had excellent recyclability. The yields of HMF derived from glucose and cellulose reached 33.2 and 22.5%, respectively, whereas those of total furans were 42.1 and 33.7%, respectively. The proposed reaction system was promising in transforming biomass-based carbohydrates into fine chemicals, given the use of green functionalization methods, the utilization of sustainable biomass-derived carbon precursor and solvents, catalyst with high acid density, and the availability of high HMF yield.


Carbohydrate Fructose Glucose 5-Hydroxymethylfurfural γ-Valerolactone Carbon solid acid 



This study was financially supported by the State Key Program of National Natural Science Foundation of China (51536009), Science and Technological Fund of Anhui Province for Outstanding Youth (1508085J01) and the National Key Technology R&D Program of China (No. 2015BAD15B06).

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflict of interest.

Supplementary material

11164_2018_3432_MOESM1_ESM.docx (184 kb)
Supplementary material 1 (DOCX 183 kb)


  1. 1.
    M. Besson, P. Gallezot, C. Pinel, Chem. Rev. 114, 1827 (2014)CrossRefGoogle Scholar
  2. 2.
    R.A. Sheldon, Green Chem. 16, 950 (2014)CrossRefGoogle Scholar
  3. 3.
    A.N. Chermahini, H. Hafizi, N. Andisheh, M. Saraji, A. Shahvar, Res. Chem. Intermed. 43, 5507 (2017)CrossRefGoogle Scholar
  4. 4.
    T.F. Wang, M.W. Nolte, B.H. Shanks, Green Chem. 16, 548 (2014)CrossRefGoogle Scholar
  5. 5.
    T. Thananatthanachon, T.B. Rauchfuss, Angew. Chem. Int. Edit. 49, 6616 (2010)CrossRefGoogle Scholar
  6. 6.
    Y.Z. Qin, Y.M. Li, M.H. Zong, H. Wu, N. Li, Green Chem. 17, 3718 (2015)CrossRefGoogle Scholar
  7. 7.
    L. Ardemani, G. Cibin, A.J. Dent, M.A. Isaacs, G. Kyriakou, A.F. Lee, C.M.A. Parlett, S.A. Parry, K. Wilson, Chem. Sci. 6, 4940 (2015)CrossRefGoogle Scholar
  8. 8.
    J. Tuteja, H. Choudhary, S. Nishimura, K. Ebitani, Chemsuschem 7, 96 (2014)CrossRefGoogle Scholar
  9. 9.
    V. Choudhary, S.H. Mushrif, C. Ho, A. Anderko, V. Nikolakis, N.S. Marinkovic, A.I. Frenkel, S.I. Sandler, D.G. Vlachos, J. Am. Chem. Soc. 135, 3997 (2013)CrossRefGoogle Scholar
  10. 10.
    Z.H. Zhang, Chemsuschem 9, 156 (2016)CrossRefGoogle Scholar
  11. 11.
    B.F.M. Kuster, Starch-Starke 42, 314 (1990)CrossRefGoogle Scholar
  12. 12.
    G. Tsilomelekis, M.J. Orella, Z.X. Lin, Z.W. Cheng, W.Q. Zheng, V. Nikolakis, D.G. Vlachos, Green Chem. 18, 1983 (2016)CrossRefGoogle Scholar
  13. 13.
    A.T. Pedersen, R. Ringborg, T. Grotkjaer, S. Pedersen, J.M. Woodley, Chem. Eng. J. 273, 455 (2015)CrossRefGoogle Scholar
  14. 14.
    H.B. Zhao, J.E. Holladay, H. Brown, Z.C. Zhang, Science 316, 1597 (2007)CrossRefGoogle Scholar
  15. 15.
    O.O. James, S. Maity, L.A. Usman, K.O. Ajanaku, O.O. Ajani, T.O. Siyanbola, S. Sahu, R. Chaubey, Energy Environ. Sci. 3, 1833 (2010)CrossRefGoogle Scholar
  16. 16.
    T. Stahlberg, W.J. Fu, J.M. Woodley, A. Riisager, Chemsuschem 4, 451 (2011)CrossRefGoogle Scholar
  17. 17.
    X.F. Sun, Z.H. Liu, Z.M. Xue, Y.W. Zhang, T.C. Mu, Green Chem. 17, 2719 (2015)CrossRefGoogle Scholar
  18. 18.
    W. Mamo, Y. Chebude, C. Marquez-Alvarez, I. Diaz, E. Sastre, Catal. Sci. Technol. 6, 2766 (2016)CrossRefGoogle Scholar
  19. 19.
    F. Yang, Y. Li, Q. Zhang, X.F. Sun, H.X. Fan, N. Xu, G. Li, Carbohydr. Polym. 131, 9 (2015)CrossRefGoogle Scholar
  20. 20.
    H.P. Yan, Y. Yang, D.M. Tong, X. Xiang, C.W. Hu, Catal. Commun. 10, 1558 (2009)CrossRefGoogle Scholar
  21. 21.
    V.V. Ordomsky, J. van der Schaaf, J.C. Schouten, T.A. Nijhuis, Chemsuschem 5, 1812 (2012)CrossRefGoogle Scholar
  22. 22.
    J. Jeong, C.A. Antonyraj, S. Shin, S. Kim, B. Kim, K.Y. Lee, J.K. Cho, J. Ind. Eng. Chem. 19, 1106 (2013)CrossRefGoogle Scholar
  23. 23.
    V.V. Ordomsky, V.L. Sushkevich, J.C. Schouten, J. van der Schaaf, T.A. Nijhuis, J. Catal. 300, 37 (2013)CrossRefGoogle Scholar
  24. 24.
    A. Dibenedetto, M. Aresta, C. Pastore, L. di Bitonto, A. Angelini, E. Quaranta, RSC Adv. 5, 26941 (2015)CrossRefGoogle Scholar
  25. 25.
    X.Y. Zhang, D. Zhang, Z. Sun, L.F. Xue, X.H. Wang, Z.J. Jiang, Appl. Catal. B Environ. 196, 50 (2016)CrossRefGoogle Scholar
  26. 26.
    J.Z. Chen, K.G. Li, L.M. Chen, R.L. Liu, X. Huang, D.Q. Ye, Green Chem. 16, 2490 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Zhao, C.M. Zhou, C. He, Y.H. Dai, X.L. Jia, Y.H. Yang, Catal. Today 264, 123 (2016)CrossRefGoogle Scholar
  28. 28.
    B. Karimi, H.M. Mirzaei, H. Behzadnia, H. Vali, ACS Appl. Mater. Interface 7, 19050 (2015)CrossRefGoogle Scholar
  29. 29.
    R.L. Liu, J.Z. Chen, X. Huang, L.M. Chen, L.L. Ma, X.J. Li, Green Chem. 15, 2895 (2013)CrossRefGoogle Scholar
  30. 30.
    L. Hu, L. Lin, Z. Wu, S.Y. Zhou, S.J. Liu, Appl. Catal. B Environ. 174, 225 (2015)CrossRefGoogle Scholar
  31. 31.
    T.W. Zhang, W.Z. Li, Z.P. Xu, Q.Y. Liu, Q.Z. Ma, H. Jameel, H.M. Chang, L.L. Ma, Bioresour. Technol. 209, 108 (2016)CrossRefGoogle Scholar
  32. 32.
    Z.H. Zhang, B. Liu, Z.B. Zhao, Carbohydr. Polym. 88, 891 (2012)CrossRefGoogle Scholar
  33. 33.
    V. Vasudevan, S.H. Mushrif, RSC Adv. 5, 20756 (2015)CrossRefGoogle Scholar
  34. 34.
    J.M.R. Gallo, D.M. Alonso, M.A. Mellmer, J.A. Dumesic, Green Chem. 15, 85 (2013)CrossRefGoogle Scholar
  35. 35.
    F.L. Yang, Q.S. Liu, M. Yue, X.F. Bai, Y.G. Du, Chem. Commun. 47, 4469 (2011)CrossRefGoogle Scholar
  36. 36.
    D.M. Alonso, S.G. Wettstein, J.A. Dumesic, Green Chem. 15, 584 (2013)CrossRefGoogle Scholar
  37. 37.
    L. Geng, Y. Wang, G. Yu, Y.X. Zhu, Catal. Commun. 13, 26 (2011)CrossRefGoogle Scholar
  38. 38.
    B.K. Price, J.M. Tour, J. Am. Chem. Soc. 128, 12899 (2006)CrossRefGoogle Scholar
  39. 39.
    Z.P. Xu, W.Z. Li, Z.J. Du, H. Wu, H. Jameel, H.M. Chang, L.L. Ma, Bioresour. Technol. 198, 764 (2015)CrossRefGoogle Scholar
  40. 40.
    C.A. Dyke, M.P. Stewart, F. Maya, J.M. Tour, Synlett 1, 155 (2004)Google Scholar
  41. 41.
    J.P. Dacquin, H.E. Cross, D.R. Brown, T. Duren, J.J. Williams, A.F. Lee, K. Wilson, Green Chem. 12, 1383 (2010)CrossRefGoogle Scholar
  42. 42.
    J.C. Manayil, V.C. Santos, F.C. Jentoft, G.M. Marta, A.F. Lee, K. Wilson, ChemCatChem 9, 2231 (2017)CrossRefGoogle Scholar
  43. 43.
    Q. Hu, L. Yang, G.L. Fan, F. Li, J. Catal. 340, 184 (2016)CrossRefGoogle Scholar
  44. 44.
    G. Budroni, A. Corma, J. Catal. 257, 403 (2008)CrossRefGoogle Scholar
  45. 45.
    H.T. Han, H.Y. Zhao, Y. Liu, Z.F. Li, J.Y. Song, W.Y. Chu, Z.Z. Sun, RSC Adv. 7, 3790 (2017)CrossRefGoogle Scholar
  46. 46.
    W.Z. Li, T.W. Zhang, H.S. Xin, M.X. Su, L.L. Ma, H. Jameel, H.M. Chang, G. Pei, RSC Adv. 7, 27682 (2017)CrossRefGoogle Scholar
  47. 47.
    T.M. Aida, Y. Sato, M. Watanabe, K. Tajima, T. Nonaka, H. Hattori, K. Arai, J. Supercrit. Fluid 40, 381 (2007)CrossRefGoogle Scholar
  48. 48.
    F.M. Jin, H. Enomoto, Energy Environ. Sci. 4, 382 (2011)CrossRefGoogle Scholar
  49. 49.
    E.I. Gurbuz, J.M.R. Gallo, D.M. Alonso, S.G. Wettstein, W.Y. Lim, J.A. Dumesic, Angew. Chem. Int. Edit. 52, 1270 (2013)CrossRefGoogle Scholar
  50. 50.
    H.P. Gao, Y.X. Peng, J.M. Pan, J. Zeng, C.H. Song, Y.L. Zhang, Y.S. Yan, W.D. Shi, RSC Adv. 4, 43029 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Feng Huang
    • 1
  • Wenzhi Li
    • 1
  • Tingwei Zhang
    • 1
  • Dawei Li
    • 2
  • Qiyu Liu
    • 1
  • Xifeng Zhu
    • 1
  • Longlong Ma
    • 3
  1. 1.Department of Thermal Science and Energy EngineeringUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum (East China)QingdaoPeople’s Republic of China
  3. 3.CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy ConversionChinese Academy of SciencesGuangzhouPeople’s Republic of China

Personalised recommendations