Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 9, pp 5271–5283 | Cite as

An efficient synthesis of biaryl diamides via Ullmann coupling reaction catalyzed by CuI in the presence of Cs2CO3 and TBAB

  • Fang Dong
  • Jian-Quan Liu
  • Xiang-Shan Wang
Article
  • 75 Downloads

Abstract

CuI accompanyied by Cs2CO3 and TBAB was confirmed to be an efficient catalyst combination to promote an Ullmann coupling reaction. It facilitated 2-bromobenzamides to undergo a coupling reaction for the synthesis of symmetrical biaryldiamides in moderate yields at 120 °C under Pd-free conditions.

Graphical Abstract

Keywords

Biaryldiamide 2-Bromobenzamide CuI Ullmann coupling Pd-free 

Notes

Acknowledgements

This work was financially supported by NSFC of China (No. 21702078), the NSF of Jiangsu Province (No. BK20170231), the Priority Academic Program Development of Jiangsu Higher education Institutions and TAPP.

Supplementary material

11164_2018_3422_MOESM1_ESM.docx (3.4 mb)
Supplementary material 1 (DOCX 3500 kb)

References

  1. 1.
    A.K. Biswas, J.B. Deutscher, G. Wegner, Chem. Ber. 125, 2325 (1992)CrossRefGoogle Scholar
  2. 2.
    G. Solladle, G. Gottarelli, Tetrahedron 43, 1425 (1987)CrossRefGoogle Scholar
  3. 3.
    D.N. Todd, A.I. Meyers, J. Org. Chem. 59, 2655 (1994)CrossRefGoogle Scholar
  4. 4.
    C.K. Wilkins, B.A. Bohn, Phytochemistry 15, 211 (1976)CrossRefGoogle Scholar
  5. 5.
    F. Ullmann, Eur. J. Org. Chem. 232, 38 (1904)Google Scholar
  6. 6.
    N. Miyaura, A. Suzuki, Chem. Commun. 19, 866 (1979)CrossRefGoogle Scholar
  7. 7.
    G.P. Yong, W.L. She, Y.M. Zhang, Y.Z. Li, Chem. Commun. 47, 11766 (2011)CrossRefGoogle Scholar
  8. 8.
    M.E. Buden, J.F. Guastavino, R.A. Rossi, Org. Lett. 15, 1174 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Proch, R. Kempe, Angew. Chem. Int. Ed. 46, 3135 (2007)CrossRefGoogle Scholar
  10. 10.
    H.Q. Zhao, J. Shen, C.L. Ren, W. Zeng, H.Q. Zeng, Org. Lett. 19, 2190 (2017)CrossRefGoogle Scholar
  11. 11.
    H.L. Liu, B.L. Yin, Z.Q. Gao, Y.W. Li, H.F. Jiang, Chem. Commun. 48, 2033 (2012)CrossRefGoogle Scholar
  12. 12.
    J.A. Ashenhurst, Chem. Soc. Rev. 39, 540 (2010)CrossRefGoogle Scholar
  13. 13.
    D.G. Pintori, M.F. Greaney, J. Am. Chem. Soc. 133, 1209 (2011)CrossRefGoogle Scholar
  14. 14.
    L. Ackermann, R. Vicente, A.R. Kapdi, Angew. Chem. Int. Ed. 48, 9792 (2009)CrossRefGoogle Scholar
  15. 15.
    H. Li, J. Liu, C.L. Sun, B.J. Li, Z.J. Shi, Org. Lett. 13, 276 (2011)CrossRefGoogle Scholar
  16. 16.
    X. Chen, K. Engle, D.H. Wang, J.Q. Yu, Angew. Chem. Int. Ed. 48, 5094 (2009)CrossRefGoogle Scholar
  17. 17.
    L. Jiao, P. Smirnov, M. Oestreich, Org. Lett. 16, 6020 (2014)CrossRefGoogle Scholar
  18. 18.
    T.Y. Chen, B.T. Chen, K.V. Bukhryakov, V.O. Rodionov, Chem. Commun. 53, 11638 (2017)CrossRefGoogle Scholar
  19. 19.
    D.L. Chen, D.F. Yuan, C. Zhang, H. Wu, J.Y. Zhang, B.L. Li, X.Z. Zhu, J. Org. Chem. 82, 10920 (2017)CrossRefGoogle Scholar
  20. 20.
    G.J. Sherborne, S. Adomeit, R. Menzel, J. Rabeah, A. Bruckner, M.R. Fielding, C.E. Willans, B.N. Nguyen, Chem. Sci. 8, 7203 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Bollenbach, P.G.V. Aquino, J.X. de Araujo-Junior, J.J. Bourguignon, F. Bihel, C. Salome, P. Wagner, M. Schmitt, Chem. Eur. J. 23, 13676 (2017)CrossRefGoogle Scholar
  22. 22.
    D. Milstein, J.K. Stille, J. Am. Chem. Soc. 100, 3636 (1978)CrossRefGoogle Scholar
  23. 23.
    K. Tamao, K. Sumitani, M. Kumada, J. Am. Chem. Soc. 94, 4374 (1972)CrossRefGoogle Scholar
  24. 24.
    N. Eiichi, O.K. Anthony, O. Nobuhisa, J. Org. Chem. 42, 1821 (1977)CrossRefGoogle Scholar
  25. 25.
    G.D. Shen, Y.C. Wang, X.L. Zhao, X.L. Huang, Y.M. Tian, T.X. Zhang, B.C. Yang, Synlett 28, 2030 (2017)CrossRefGoogle Scholar
  26. 26.
    K.C. Nicolaou, C.N.C. Boddy, S. Natarajan, T.-Y. Yue, H. Li, S. Bräse, J.M. Ramanjulu, J. Am. Chem. Soc. 119, 3421 (1997)CrossRefGoogle Scholar
  27. 27.
    T. Abe, Y. Takahashi, Y. Matsubara, K. Yamada, Org. Chem. Front. 4, 2124 (2017)CrossRefGoogle Scholar
  28. 28.
    B.B. Feng, J.Q. Liu, X.S. Wang, J. Org. Chem. 82, 1817 (2017)CrossRefGoogle Scholar
  29. 29.
    J.Q. Liu, Y.G. Ma, M.M. Zhang, X.S. Wang, J. Org. Chem. 82, 4918 (2017)CrossRefGoogle Scholar
  30. 30.
    D.S. Chen, G.L. Dou, Y.L. Li, Y. Liu, X.S. Wang, J. Org. Chem. 78, 5700 (2017)CrossRefGoogle Scholar
  31. 31.
    C. Li, W.T. Zhang, X.S. Wang, J. Org. Chem. 79, 5847 (2014)CrossRefGoogle Scholar
  32. 32.
    S. Goswami, A.K. Adak, R. Mukherjee, S. Jana, S. Dey, J.F. Gallagher, Tetrahedron 61, 4289 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional MaterialsJiangsu Normal UniversityXuzhouPeople’s Republic of China

Personalised recommendations