Research on Chemical Intermediates

, Volume 44, Issue 9, pp 5223–5240 | Cite as

Facile fabrication of visible light-driven CeO2/PMMA thin film photocatalyst for degradation of CR and MO dyes

  • P. Latha
  • K. Prakash
  • S. Karuthapandian


CeO2/PMMA NCTF was successfully fabricated by a facile, room-temperature, inexpensive, and simple solution casting method. Ultra-violet, Fourier-transform infrared spectroscopy, X-ray diffraction spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy techniques have been used to scrutinize the structure and properties of CeO2/PMMA NCTF. It has been found that the CeO2 nanocubes are constantly dispersed into the PMMA matrix thus forming a thin film. Due to its unique structure, the CeO2/PMMA NCTF has enhanced activity and selectivity towards the visible light-driven degradation of various organic pollutants. The photocatalytic degradation efficiency of the catalyst was tested against Congo red and methyl orange, selected as model organic contaminants. The synergistic effect of the catalyst reduces the electron–hole recombination rate and thus enhances the photocatalytic activity. Hydroxyl radical and super oxide radical ion species induce the photocatalysis which can be determined by trapping experiments. The synthesized CeO2/PMMA NCTF can be reused several times without loss of activity, and a plausible mechanism was also proposed. It is hoped that our present effort may inspire further studies in new, efficient, recyclable photocatalysts and the degradation of organic contaminants driven by visible light.


Dye Photocatalyst Photodegradation Thin film Nanocubes 


  1. 1.
    M.M. Kamel, H.M. Mashaly, F. Abdelghaffar, World Appl. Sci. J. 26, 1053 (2013)Google Scholar
  2. 2.
    U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170, 520 (2009)CrossRefGoogle Scholar
  3. 3.
    A. Sharmaa, R.K. Dutta, RSC Adv. 5, 43815 (2015)CrossRefGoogle Scholar
  4. 4.
    T. Jiao, H. Zhao, J. Zhou, Q. Zhang, X. Luo, J. Hu, Q. Penga, X. Ya, ACS Sustain. Chem. Eng. 3, 3130 (2015)CrossRefGoogle Scholar
  5. 5.
    C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 39, 4206 (2010)CrossRefGoogle Scholar
  6. 6.
    S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashi, Water Air Soil Pollut. 215, 3 (2011)CrossRefGoogle Scholar
  7. 7.
    C. Wang, C. Shao, L. Wang, L. Zhang, X. Li, Y. Liu, J. Colloid Interface Sci. 333, 242 (2009)CrossRefGoogle Scholar
  8. 8.
    S.H.S. Chan, T.Y. Wu, J.C. Juan, C.Y. Teh, J. Chem. Technol. Biotechnol. 86, 1130 (2011)CrossRefGoogle Scholar
  9. 9.
    P.C.C. Faria, J.J.M. Orfao, M.F.R. Pereira, Appl. Catal. B Environ. 88, 341 (2009)CrossRefGoogle Scholar
  10. 10.
    H.S. El-Desoky, M.M. Ghoneim, N.M. Zidan, Desalination 264, 143 (2010)CrossRefGoogle Scholar
  11. 11.
    F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Appl. Catal. A Gen. 359, 25 (2009)CrossRefGoogle Scholar
  12. 12.
    L. Xu, J. Wang, Environ. Sci. Technol. 46, 10145 (2012)CrossRefGoogle Scholar
  13. 13.
    J. Xie, D. Jiang, M. Chen, D. Li, J. Zhu, X. Lü, C. Yan, Colloid Surf. A 372, 107 (2010)CrossRefGoogle Scholar
  14. 14.
    N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A.I. Minett, J. Chen, Appl. Mater. Interface 4, 3718 (2012)CrossRefGoogle Scholar
  15. 15.
    D. Ma, Y. Zhao, J. Zhao, Y. Li, Y. Lu, D. Zhao, Superlattice Microsyst. 83, 411 (2015)CrossRefGoogle Scholar
  16. 16.
    P. Trogadas, J. Parrondo, V. Ramani, ACS Appl. Mater. Interface 4, 5098 (2012)CrossRefGoogle Scholar
  17. 17.
    W. Huang, Y. Gao, Catal. Sci. Technol. 4, 3772 (2014)CrossRefGoogle Scholar
  18. 18.
    M. Zeng, Y. Li, M. Mao, J. Bai, L. Ren, X. Zhao, ACS Catal. 5, 3278 (2015)CrossRefGoogle Scholar
  19. 19.
    D. Zhang, X. Du, L. Shia, R. Gao, Dalton Trans. 41, 14455 (2012)CrossRefGoogle Scholar
  20. 20.
    Y. Liu, Y. Ding, L. Zhang, P.X. Gao, Y. Lei, RSC Adv. 2, 5193 (2012)CrossRefGoogle Scholar
  21. 21.
    Z.R. Tang, Y. Zhang, Y.J. Xu, RSC Adv. 1, 1772 (2011)CrossRefGoogle Scholar
  22. 22.
    A. Umar, R. Kumar, M.S. Akhtar, G. Kumar, S.H. Kim, J. Colloid Interface Sci. 454, 61 (2015)CrossRefGoogle Scholar
  23. 23.
    A.S. Monfareda, M. Mohseni, M.H. Tabatabaei, Colloid Surf. A 408, 64 (2012)CrossRefGoogle Scholar
  24. 24.
    J.F.D. Lima, R.F. Martins, O.A. Serra, Opt. Mater. 35, 56 (2012)CrossRefGoogle Scholar
  25. 25.
    Z. Zhang, W. Liu, J. Zhu, Z. Song, Appl. Surf. Sci. 257, 1750 (2010)CrossRefGoogle Scholar
  26. 26.
    M. Pesic, A. Podolski-Renic, S. Stojkovic, B. Matovic, D. Zmejkoski, V. Kojic, G. Bogdanovic, A. Pavicevic, M. Mojovic, A. Savic, I. Milenkovic, A. Kalauzi, K. Radotic, Chem. Biol. Interact. 232, 85 (2015)CrossRefGoogle Scholar
  27. 27.
    J.D. Weaver, C.L. Stabler, Acta Biomater. 16, 136 (2015)CrossRefGoogle Scholar
  28. 28.
    M.B. Kolli, N.D.P.K. Manne, R. Para, S.K. Nalabotu, G. Nandyala, T. Shokuhfar, K. He, A. Hamlekhan, J.Y. Ma, P.S. Wehner, L. Dornon, R. Arvapalli, K.M. Rice, E.R. Blough, Biomaterials 35, 9951 (2014)CrossRefGoogle Scholar
  29. 29.
    H. Li, G. Wang, F. Zhang, Y. Cai, Y. Wang, I. Djerdj, RSC Adv. 2, 12413 (2012)CrossRefGoogle Scholar
  30. 30.
    C.R. Minitha, R. Pandian, S. Amirthapandian, R.T. Rajendra Kumar, RSC Adv. 5, 56982 (2015)CrossRefGoogle Scholar
  31. 31.
    Y. Li, Q. Sun, M. Kong, W. Shi, J. Huang, J. Tang, X. Zhao, J. Phys. Chem. C 115, 14050 (2011)CrossRefGoogle Scholar
  32. 32.
    M.M. Khan, S.A. Ansari, D. Pradhan, D.H. Han, J. Lee, M.H. Cho, Ind. Eng. Chem. Res. 53, 9754 (2014)CrossRefGoogle Scholar
  33. 33.
    P.S. Kumar, M. Selvakumar, S.G. Babu, S.K. Jaganathan, S. Karuthapandian, S. Chattopadhyay, RSC Adv. 5, 57493 (2015)CrossRefGoogle Scholar
  34. 34.
    P. Latha, R. Dhanabackialakshmi, P.S. Kumar, S. Karuthapandian, Sep. Purif. Technol. 168, 124 (2016)CrossRefGoogle Scholar
  35. 35.
    H. Abdullah, D.H. Kuo, Y.R. Kuo, F.A. Yu, K.B. Cheng, J. Phys. Chem. C 120, 7144 (2016)CrossRefGoogle Scholar
  36. 36.
    T. Li, Z. Zhang, W. Li, C. Liu, J. Wang, L. An, Colloid Surf. A 489, 289 (2016)CrossRefGoogle Scholar
  37. 37.
    M. Cantarella, R. Sanz, M.A. Buccheri, L. Romano, V. Privitera, Mat. Sci. Semicond. Proc. 42, 58 (2016)CrossRefGoogle Scholar
  38. 38.
    K.P.O. Mahesh, D.H. Kuo, B.R. Huang, M. Ujihara, Appl. Catal. A Gen. 475, 235 (2014)CrossRefGoogle Scholar
  39. 39.
    F. Mirhoseini, A. Salabat, RSC Adv. 5, 12536 (2015)CrossRefGoogle Scholar
  40. 40.
    S. Natarajan, J. Kumari, D.S. Lakshmi, A. Mathur, M. Bhuvaneshwari, A. Parashar, M. Pulimi, N. Chandrasekaran, A. Mukherjee, Appl. Surf. Sci. 362, 93 (2016)CrossRefGoogle Scholar
  41. 41.
    P. Dambruoso, M. Ballestri, C. Ferroni, A. Guerrini, G. Sotgiu, G. Varchi, A. Massi, Green Chem. 17, 1907 (2015)CrossRefGoogle Scholar
  42. 42.
    A.A. Ansari, A. Kaushik, P.R. Solanki, B.D. Malhotra, Electrochem. Commun. 10, 1246 (2008)CrossRefGoogle Scholar
  43. 43.
    K. Zhou, J. Liu, B. Wang, Q. Zhang, Y. Shi, S. Jiang, Y. Hu, Z. Gui, Mater. Lett. 126, 159 (2014)CrossRefGoogle Scholar
  44. 44.
    S. Natarajan, J. Kumari, D.S. Lakshmi, A. Mathur, M. Bhuvaneshwari, A. Parashar, M. Pulimi, N. Chandrasekaran, A. Mukherjee, Appl. Surf. Sci. 362, 93 (2016)CrossRefGoogle Scholar
  45. 45.
    K. Saravanakumar, M. Mymoon Ramjan, P. Suresh, V. Muthuraj, J. Alloys Compd. 664, 149 (2016)CrossRefGoogle Scholar
  46. 46.
    G. Xiao, X. Huang, X. Liao, B. Shi, J. Phys. Chem. C 117, 9739 (2013)CrossRefGoogle Scholar
  47. 47.
    N. Zhang, S. Liu, X. Fu, Y.J. Xu, J. Phys. Chem. C 115, 22901 (2011)CrossRefGoogle Scholar
  48. 48.
    J. Zhang, W. Peng, Z. Chen, H. Chen, L. Han, J. Phys. Chem. C 116, 19182 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.PG and Research Department of ChemistryVHNSN CollegeVirudhunagarIndia

Personalised recommendations