Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 9, pp 5193–5222 | Cite as

Synthesis of nano-sized zeolite-Y functionalized with 5-amino-3-thiomethyl 1H-pyrazole-4-carbonitrile for effective Fe(III)-chelating strategy

  • Ibraheem O. Ali
  • Tarek M. Salama
  • Mostafa F. Bakr
  • Ahmed A. El‐Henawy
  • Mohamed Abedel Lateef
  • Hosni A. Guma
Article
  • 71 Downloads

Abstract

Zeolite crystals having faujasite-type (FAU) topology in the nanometer range were first synthesized from amorphous rice husk ash at a low temperature of 363 K under autogenous pressure. Following this, surface functionalization of the produced zeolite with 5-amino-3-thiomethyl 1H-pyrazole-4-carbonitrile (pyrazole; Py) was carried out by two different methods, namely liquefied-period adsorption of Py (Py/Yim) and a flexible ligand method (Py/Yss). The latter provides a larger amount of Py formed into as-made zeolite-Y. The sorption of Fe(III) onto Py/NaY afforded large meso–macroporosity introduced by the aggregation–assembly between Fe(III)Py complexes and NaY zeolite, which was typically evidenced for Fe(III)Py/Yss. The materials were characterized by XRD, FT-IR spectroscopy, thermal analysis (TGA) and porous structure by N2 adsorption–desorption at 77 K. The XRD evaluation showed that the zeolite structure was managed right after adding Fe(III) to Py/Y, although a change in intensity of the zeolite reflections on complex formation was noticed. The FT-IR spectrum of Fe(III)Py/Yss exhibited two bands at 3594 and 3542 cm−1 assigned to bridging hydroxyl groups associated with a Brönsted site, which did not exist in the spectra of Fe(III)Py/Yim and Fe(III)-exchanged as-made NaY zeolite. This effect was ascribed to the induced greater electronegativity of the ligand towards Fe(III) species in dissociation of water molecules, producing acidic protons that are potential Brönsted acid sites. It was also evident that the Fe(III) adsorption capacity on Py/Yss is greater than on as-made NaY zeolite and Py/Yim, owing most likely to the increasing concentration of the incorporating Py ligand which leads to an increase in the number of binding sites. The Fe(III) adsorption onto Py/Yss was well described by the pseudo-second-order kinetic model. Density functional theory (B3LYP/6-311G*) was performed to understanding the interaction mode of the ligand and complex with zeolite. The QSPR was calculated depending on the optimization geometries, frontier molecular orbitals, thermodynamic parameters, and global chemical reactivates, which were discussed for the studied compounds. The HOMOs, LUMOs and molecular electrostatic potentials were plotted to elucidate the interaction manner of the tested compounds with the zeolite. The nonlinear optical properties were elucidated via 1st and 2nd hyper-polarizabilities. The auto-degradation behavior was predicted for the complex, based on the ionization optional and bond dissociation enthalpy. The interactions between Py and Fe(III)Py with the zeolite surface have been described with molecular dynamics using a Monte Carlo simulation.

Keywords

Zeolite-Y Functionalization Fe(III) adsorption Pyrazole Entrapped 

References

  1. 1.
    M.A. Shavandi, Z. Haddadian, M.H.S. Ismail, N. Abdullah, Z.Z. Abidin, Taiwan Inst. Chem. Eng. 43, 750 (2012)CrossRefGoogle Scholar
  2. 2.
    M.J. McLaughlin, B.A. Zarcinas, D.P. Stevens, N. Cook, Commun. Soil Sci. Plant Anal. 31, 1661 (2000)CrossRefGoogle Scholar
  3. 3.
    M.J. McLaughlin, R.E. Hamon, R.G. McLaren, T.W. Speir, S.L. Rogers, Aust. J. Soil Res. 38, 1037 (2000)CrossRefGoogle Scholar
  4. 4.
    W. Ling, Q. Shen, Y. Gao, X. Gu, Z. Yang, Aust. J. Soil Res. 45, 618 (2007)CrossRefGoogle Scholar
  5. 5.
    S. Kocaoba, Y. Orhan, T. Akyuž, Desalination 214, 1 (2007)CrossRefGoogle Scholar
  6. 6.
    J. Oliva, J.D. Pablo, J.-L. Cortina, J. Cama, C. Ayora, J. Hazard Mater. 194, 312 (2011)CrossRefGoogle Scholar
  7. 7.
    A. Ahmadpour, M. Tahmasbi, T.R. Bastami, J.A. Besharati, J. Hazard Mater. 166, 925 (2009)CrossRefGoogle Scholar
  8. 8.
    D. Novembre, B. DiSabatino, D. Gimeno, M. Garcia-Valleś, S. Manent, Microporous Mesoporous Mater. 75, 1 (2004)CrossRefGoogle Scholar
  9. 9.
    D.W. Breck, Zeolite Molecular Sieves, Structure, Chemistry and Use, vol. 23 (Wiley, New York, 1974)Google Scholar
  10. 10.
    H. Katsuki, S. Furuta, T. Watari, S. Komarneni, Microporous Mesoporous Mater. 86, 145 (2005)CrossRefGoogle Scholar
  11. 11.
    L. Sun, K. Gong, Ind. Eng. Chem. Res. 40, 5861 (2001)CrossRefGoogle Scholar
  12. 12.
    H.P. Wang, K.S. Lin, Y.J. Huang, M.C. Li, L.K. Tsaur, J. Hazard Mater. 58, 147 (1998)CrossRefGoogle Scholar
  13. 13.
    R.S. Bowman, Microporous Mesoporous Mater. 61, 43 (2003)CrossRefGoogle Scholar
  14. 14.
    M. Ghiaci, R. Kia, A. Abbaspur, F. Seyedeyn-Azad, Sep. Purif. Technol. 40, 285 (2004)CrossRefGoogle Scholar
  15. 15.
    A.D. Vujakocic, M. Tomasevic-anovic, A. Dakovic, V.T. Dondur, Appl. Clay Sci. 17, 265 (2000)CrossRefGoogle Scholar
  16. 16.
    I.O. Ali, T.M. Salama, M. Abedel Lateef, H.A. Gumaa, M.A. Hegazy, M.F. Bakr, Environ. Technol. Innov. 4, 110 (2015)CrossRefGoogle Scholar
  17. 17.
    L. Zarnovsky, The influence of heavy metals on the processes of biological cleaning of waste water, Ph.D. Thesis, Slovak University of Technology, Bratislava, Slovak Republic, 112 (1994)Google Scholar
  18. 18.
    M. Földesovă, P. Dillinger, P. Lukăĉ, J. Radio, J. Radioanaly. Nucl. Chem. 242, 227–230 (1999)CrossRefGoogle Scholar
  19. 19.
    V.V. Ginzburg, C. Singh, A.C. Balazs, Macromolecules 33, 1089 (2000)CrossRefGoogle Scholar
  20. 20.
    R. Celis, M.C. Hermosin, J. Cornjo, Environ. Sci. Technol. 34, 4593 (2000)CrossRefGoogle Scholar
  21. 21.
    I.S. Hafiz, Naturforsch 55, 321 (2000)CrossRefGoogle Scholar
  22. 22.
    M.A. Elnawawy, J. Mater. Sci. Eng. A 2, 610 (2012)Google Scholar
  23. 23.
    W.H. Bragg, W.L. Bragg, Nature 91, 557 (1913)CrossRefGoogle Scholar
  24. 24.
    J.H. de Boer, B.G. Linsen, T.J. Osinga, J. Catal. 4, 643 (1964)Google Scholar
  25. 25.
    B. Oktavia, L.W. Lim, T. Takeuchi, Anal. Sci. 24, 1487 (2008)CrossRefGoogle Scholar
  26. 26.
    A. Goi, Y. Veressinina, M. Trapido, Chem. Eng. J. 143, 1 (2008)CrossRefGoogle Scholar
  27. 27.
    M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT. Google Scholar (2013)Google Scholar
  28. 28.
    C. C. G. U. Molecular Operating Environment (MOE), 1010 handbook St. West, Suite 910, Montreal, QC, Canada, H3A 2R7 (2017)Google Scholar
  29. 29.
    K. Mori, K. Kagohara, H. Yamashita, J. Phys. Chem. C 112, 2593 (2008)CrossRefGoogle Scholar
  30. 30.
    R. Vijayalakshmi, S.K. Kukshreshtha, Microporous Mesoporous Mater. 111, 449 (2008)CrossRefGoogle Scholar
  31. 31.
    S. Yamaguchi, T. Fukura, K. Takiguchi, C. Fujita, M. Nishibori, Y. Teraoka, H. Yahiro, Catal. Today 242, 261 (2015)CrossRefGoogle Scholar
  32. 32.
    E. M. Flanigen, H. Khatami, H. A. Szymenski, in Molecular Sieve Zeolites I, Advances in Chemistry Series, vol. 101, ed. by Flanigen E M, Sand L B (American Chemical Society, Washington, 1971), p. 201Google Scholar
  33. 33.
    E. M. Flanigen. Structural analysis by infrared spectroscopy, in Zeolite Chemistry and Catalysis, ACS Monograph, vol. 171, ed. by J. A. Rabo (American Chemical Society, Washington, 1976), p. 80Google Scholar
  34. 34.
    D. Buddhadeb, S. Jana, R. Bera, P.K. Saha, S. Kone, Appl. Catal. A 318, 89 (2007)CrossRefGoogle Scholar
  35. 35.
    C. Hai-Ying, M.H.S. Wolfgang, Catal. Today 42, 73 (1998)CrossRefGoogle Scholar
  36. 36.
    E.-M. El-Makki, R.A. Van Santen, W.M.H. Sachtler, J. Phys. Chem. B 103, 4611 (1999)CrossRefGoogle Scholar
  37. 37.
    E. Loffler, U. Lohse, C.H. Penker, G. Oehmann, L.M. Kustov, V.L. Zholobenko, V.B. Kazansky, Zeolites 10, 266 (1990)CrossRefGoogle Scholar
  38. 38.
    C. Sedlmair, B. Gil, K. Seshan, A. Jentys, J.A. Lercher, Phys. Chem. Chem. Phys. 5, 1897–1905 (2003)CrossRefGoogle Scholar
  39. 39.
    E. Gallei, D. Eisenbach, J. Catal. 37, 474 (1975)CrossRefGoogle Scholar
  40. 40.
    R. Trujillano, J. Grimoult, C. Louis, J.-F. Lambert, Stud. Surf. Sci. Catal. 130, 1055 (2000)CrossRefGoogle Scholar
  41. 41.
    J.W. Ward, J. Catal. 19, 348 (1970)CrossRefGoogle Scholar
  42. 42.
    E. Ramachandran, S. Natarajan, Cryst. Res. Technol. 41, 411 (2006)CrossRefGoogle Scholar
  43. 43.
    J.H. Lee, Y.A. Kim, K. Kim, Y.D. Huh, J.W. Hyun, H.S. Kim, S.J. Noh, C.S. Hwang, Bull. Korean Chem. Soc. 28, 1091 (2007)CrossRefGoogle Scholar
  44. 44.
    K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)CrossRefGoogle Scholar
  45. 45.
    L.T. Vlaev, G.G. Gospondinov, Thermochem. Acta 370, 15 (2001)CrossRefGoogle Scholar
  46. 46.
    T. Hatakeyama, F. X. Quinn, Fundamentals and applications to polymer science, Thermal Analysis, 2nd edn. (1994) ISBN: 978-0-471-98362-0Google Scholar
  47. 47.
    M.R. Awual, T. Kobayashi, Y. Miyazaki, R. Motokawa, H. Shiwaku, S. Suzuki, Y. Okamoto, T. Yaita, J. Hazard Mater. 252–253, 313 (2013)CrossRefGoogle Scholar
  48. 48.
    M.R. Awual, T. Kobayashi, H. Shiwaku, Y. Miyazaki, R. Motokawa, S. Suzuki, Y. Okamoto, T. Yaita, Chem. Eng. J. 225, 558 (2013)CrossRefGoogle Scholar
  49. 49.
    M.R. Awual, M.A. Khaleque, Y. Ratna, H. Znad, J. Ind. Eng. Chem. 21, 405 (2015)CrossRefGoogle Scholar
  50. 50.
    Y. Wu, H.J. Luo, H. Wang, C. Wang, J. Zhang, Z.L. Zhang, J. Colloid Interface Sci. 394, 183 (2013)CrossRefGoogle Scholar
  51. 51.
    S. Lagergren, Vetensk. Handl. 24, 1 (1898)Google Scholar
  52. 52.
    Y.S. Ho, G. McKay, Water Res. 34, 735 (2000)CrossRefGoogle Scholar
  53. 53.
    I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918)CrossRefGoogle Scholar
  54. 54.
    H.M.F. Freundlich, Z. Phys. Chem. 57, 385 (1906)Google Scholar
  55. 55.
    Y.C. Sharma, C.H. Weng, J. Hazard Mater. 142, 449 (2007)CrossRefGoogle Scholar
  56. 56.
    K.M. Abd El-Rahman, A.M. El-Kamash, M.R. El-Sourougy, N.M. Abd El-Mneim, J. Radioanal. Nucl. Chem. 268, 221 (2006)CrossRefGoogle Scholar
  57. 57.
    A. Sheibani, M.R. Shishehbor, Int. J. Ind. Chem. 3, 4 (2012)CrossRefGoogle Scholar
  58. 58.
    A. S. Aboul-Magda, S. A. Al-Husain, S. A. Al-Zahrani, Arab. J. Chem. 9, S1 (2016)CrossRefGoogle Scholar
  59. 59.
    Y. Li, X. Hu, B. Ren, Z. Wang, Am. Chem. Sci. J. 10, 1 (2016)CrossRefGoogle Scholar
  60. 60.
    S. Hashemian, S.H. Hosseini, H. Salehifar, K. Salari, Am. J. Anal. Chem. 4, 123 (2013)CrossRefGoogle Scholar
  61. 61.
    P. Hofmann, Arvi Rauk: Orbital Interaction Theory of Organic Chemistry. Wiley, New York 1994. ISBN 0‐471‐59389‐3. 307 Seiten, mit HMO‐Programmdiskette, Preis: $45.50, Berichte der Bunsengesellschaft für physikalische Chemie, 99, 997–999 (1995)Google Scholar
  62. 62.
    K. Fukui, Science 218, 747 (1982)CrossRefGoogle Scholar
  63. 63.
    S.A. Wildman, G.M. Crippen, J. Chem. Inf. Comput. Sci. 39, 868 (1999)CrossRefGoogle Scholar
  64. 64.
    N.C. Handy, Chem. Phys. Lett. 197(4–5), 506 (1992)CrossRefGoogle Scholar
  65. 65.
    R. Zhang, B. Dub, G. Sun, Y. Sun, Spectrochim. Acta 5A, 1115 (2010)CrossRefGoogle Scholar
  66. 66.
    X. Ren, Y. Sun, X. Fu, L. Zhu, Z. Cui, J. Mol. Model. 19, 2249 (2013)CrossRefGoogle Scholar
  67. 67.
    A. Li-ling, L. Jing-yao, J. Mol. Model. 20(4), 2179 (2014)CrossRefGoogle Scholar
  68. 68.
    W. Sang-aroon, V. Amornkitbamrung, V. Ruangpornvisuti, J. Mol. Model. 19, 5501 (2013)CrossRefGoogle Scholar
  69. 69.
    J. Kieffer, É. Brémond, P. Lienard, G. Boccardi, J. Mol. Struct. THEOCHEM 954, 75 (2010)CrossRefGoogle Scholar
  70. 70.
    J.S. Wright, E.R. Johnson, G.A. DiLabio, J. Am. Chem. Soc. 123, 1173 (2001)CrossRefGoogle Scholar
  71. 71.
    A.G. Al-Sehemi, Arab. J. Chem. 10, S1703 (2017)CrossRefGoogle Scholar
  72. 72.
    A.R. Eivani, J. Zhou, J. Duszczyk, Comput. Mater. Sci. 54, 370 (2012)CrossRefGoogle Scholar
  73. 73.
    J.P. Abraham, D. Sajan, V. Shettigar, S. Dharmaprakash, I. Němec, I.H. Joe, V. Jayakumar, J. Mol. Struct. 917, 27 (2009)CrossRefGoogle Scholar
  74. 74.
    P. Manjula, S. Manonmani, P. Jayaram, S. Rajendran, Anti-Corros. Methods Mater. 48, 319 (2001)CrossRefGoogle Scholar
  75. 75.
    I.L. Rosenfeld, Corrosion Inhibitors (McGraw-Hill, New York, 1981)Google Scholar
  76. 76.
    W.J. Henre, S.O. William, Spartan’10 Tutorial and User’s Guide (Wavefunction Inc, Irvine, 2008)Google Scholar
  77. 77.
    S. Kaya, C. Kaya, L. Guo, F. Kandermirli, B. Tüzün, I. Uğurlu, L.H. Madkour, M. Saraçoğlu, J. Mol. Liq. 219, 497 (2016)CrossRefGoogle Scholar
  78. 78.
    R.W. Matthews, Water Res. 24, 653 (1990)CrossRefGoogle Scholar
  79. 79.
    L.B. Galperin, S.A. Bradley, T.M. Mezza, Appl. Catal. A 219, 79–88 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry Department, College of Science and ArtsJouf UniversityAlgrayuatKingdom of Saudi Arabia
  2. 2.Chemistry Department, Faculty of ScienceAl-Azhar UniversityNasr City, CairoEgypt
  3. 3.Chemistry Department, Faculty of ScienceAlbaha University, ElMikwha BranchAlbahaKingdom of Saudi Arabia
  4. 4.New Urban Communities Authority (NUCA), 6th OctoberGizaEgypt

Personalised recommendations