Research on Chemical Intermediates

, Volume 44, Issue 9, pp 5123–5138 | Cite as

Effect of total suspended solids and various treatment on rheological characteristics of municipal sludge

  • Xiuqin Cao
  • Kun Jiang
  • Xin Wang
  • Guoqing Xu


Rheological characteristics play an important role in the design and optimization of sludge treatment processes that are dependent on the total suspended solids (TSS). The present study systematically investigated the impact of various treatment processes on sludge rheology. The effect of TSS on rheological properties was comprehensively explored. Rheological tests were performed at (20 ± 0.1) °C, physicochemical parameters of the sludge were measured for compositional analysis. The composition of sludge is altered when subjected to both heat treatment and AD. All sludges exhibit shear-thinning behavior, the results of a t test (with significance level of 0.05) indicated that the Herschel–Bulkley model provides a valid description of sludge flow behaviors. The anaerobically digested sludge (ADS) is the least viscous while thermal hydrolyzed sludge (THS) shows slightly higher viscosity than that of fresh mixed sludge (FMS) at high shear rates. The yield stress and thixotropy decrease gradually as the treatment proceeds. Both infinite viscosity and yield stress of THS increases dramatically when the TSS exceeds 7.30%, hence 7.30% may serve as a critical level for THS to preliminarily determine whether it is economically viable to implement a thermal pretreatment. The TSS threshold for ADS is determined to be 7.12% given the sharp increase in infinite viscosity and yield stress, which are undesirable for dewatering. The thixotropy increases with increasing TSS, and TSS only has a slight influence on the thixotropic properties of THS relative to FMS, which demonstrates the advantage of thermal pretreatment for the purpose of achieving high solid sludge AD.


Rheology Viscosity Yield stress Thixotropy TSS Various treatment 



This work was financially supported by the Beijing Municipal Education Commission and Beijing Natural Science Foundation (grant number KZ201310016017).


  1. 1.
    S.S. Chen, N. Li, B. Dong, W.T. Zhao, L.L. Dai, X.H. Dai, J. Hazard. Mater. 342, 1 (2018)CrossRefGoogle Scholar
  2. 2.
    H.W. Kim, S.K. Han, H.S. Shin, Waste Manag. Res. 21(6), 515 (2003)CrossRefGoogle Scholar
  3. 3.
    L. Appels, J. Baeyens, J. Degrève, R. Dewil, Prog. Energy Combust. Sci. 34(6), 755 (2008)CrossRefGoogle Scholar
  4. 4.
    N. Duan, B. Dong, B. Wu, X.H. Dai, Bioresour. Technol. 104, 150 (2012)CrossRefGoogle Scholar
  5. 5.
    L. Nazari, Z.S. Yuan, D. Santoro, S. Sarathy, D. Ho, D. Batstone, C.B. Xu, M.B. Ray, Water Res. 113, 111 (2017)CrossRefGoogle Scholar
  6. 6.
    S. Pilli, S. Yan, R.D. Tyagi, R.Y. Surampalli, Crit. Rev. Environ. Sci. Technol. 45(6), 669 (2015)CrossRefGoogle Scholar
  7. 7.
    H.B. Nielsen, A. Thygesen, A.B. Thomsen, J.E. Schmidt, J. Chem. Technol. Biotechnol. 86(2), 238 (2011)CrossRefGoogle Scholar
  8. 8.
    Y.G. Xue, H.J. Liu, S.S. Chen, N. Dichtl, X.H. Dai, N. Li, Chem. Eng. J. 264, 174 (2015)CrossRefGoogle Scholar
  9. 9.
    B.R. Dhar, G. Nakhla, M.B. Ray, Waste Manag. 32(3), 542 (2012)CrossRefGoogle Scholar
  10. 10.
    J.L. Urrea, S. Collado, A. Laca, M. Diaz, J. Water Process Eng. 5, 153 (2015)CrossRefGoogle Scholar
  11. 11.
    J.S. Zhang, Y.G. Xue, N. Eshtiaghi, X.H. Dai, W.Q. Tao, Z. Li, Water Res. 116, 34 (2017)CrossRefGoogle Scholar
  12. 12.
    J. Laurent, M. Casellas, H. Carrère, C. Dagot, Chem. Eng. J. 166(3), 841 (2011)CrossRefGoogle Scholar
  13. 13.
    S. Baroutian, M. Robinson, A.M. Smit, S. Wijeyekoon, D. Gapes, Bioresour. Technol. 146, 294 (2013)CrossRefGoogle Scholar
  14. 14.
    N. Abe, Y.Q. Tang, M. Iwamura, S. Morimura, K. Kida, Water Sci. Technol. 67(11), 2527 (2013)CrossRefGoogle Scholar
  15. 15.
    J.C. Baudez, F. Markis, N. Eshtiaghi, P. Slatter, Water Res. 45(17), 5675 (2011)CrossRefGoogle Scholar
  16. 16.
    G.H. Feng, L.Y. Liu, W. Tan, Ind. Eng. Chem. Res. 53(27), 11185 (2014)CrossRefGoogle Scholar
  17. 17.
    G.H. Feng, Y.B. Guo, W. Tan, Water Sci. Technol. 72(11), 2018 (2015)CrossRefGoogle Scholar
  18. 18.
    N. Ratkovich, W. Horn, F.P. Helmus, S. Rosenberger, W. Naessens, I. Nopens, T.R. Bentzen, Water Res. 47(2), 463 (2013)CrossRefGoogle Scholar
  19. 19.
    N. Eshtiaghi, F. Markis, S.D. Yap, J.C. Baudez, P. Slatter, Water Res. 47(15), 5493 (2013)CrossRefGoogle Scholar
  20. 20.
    E. Farno, J.C. Baudez, R. Parthasarathy, N. Eshtiaghi, Chem. Eng. J. 273, 534 (2015)CrossRefGoogle Scholar
  21. 21.
    R. Hreiz, N. Adouani, D. Fünfschilling, P. Marchal, M.N. Pons, Chem. Eng. Res. Des. 119, 47 (2017)CrossRefGoogle Scholar
  22. 22.
    E. Farno, J.C. Baudez, R. Parthasarathy, N. Eshtiaghi, Water Res. 56, 156 (2014)CrossRefGoogle Scholar
  23. 23.
    E. Farno, J.C. Baudez, R. Parthasarathy, N. Eshtiaghi, Chem. Eng. J. 295, 39 (2016)CrossRefGoogle Scholar
  24. 24.
    H.F. Wang, Y.J. Ma, H.J. Wang, H. Hu, H.Y. Yang, R.J. Zeng, Water Res. 122, 398 (2017)CrossRefGoogle Scholar
  25. 25.
    E. Hong, A.M. Yeneneh, A. Kayaalp, T.K. Sen, H.M. Ang, M. Kayaalp, Res. Chem. Intermed. 42(8), 6567 (2016)CrossRefGoogle Scholar
  26. 26.
    S. Al-Dawery, J. Environ. Chem. Eng. 4(4), 4731 (2016)CrossRefGoogle Scholar
  27. 27.
    A. Pevere, G. Guibaud, E. Goin, E. van Hullebusch, P. Lens, Biochem. Eng. J. 43(3), 231 (2009)CrossRefGoogle Scholar
  28. 28.
    D. Khodaei, S.M.A. Razavi, M.H.H. Khodaparast, Food Res. Int. 66, 58 (2014)CrossRefGoogle Scholar
  29. 29.
    M.V. Chandra, B.A. Shamasundar, Food Hydrocoll. 48, 47 (2015)CrossRefGoogle Scholar
  30. 30.
    M. Ruiz-Hernando, J. Labanda, J. Llorens, Chem. Eng. J. 262, 242 (2015)CrossRefGoogle Scholar
  31. 31.
    A. American Public Health, A. American Water Works, F. Water Pollution Control, F. Water Environment, standard methods for the examination of water and wastewater, American Public Health Association (2012)Google Scholar
  32. 32.
    L. Appels, J. Degre’ve, B. Van der Bruggen, J.V. Impe, R. Dewil, Bioresour. Technol. 101(15), 5743 (2010)CrossRefGoogle Scholar
  33. 33.
    K. Hii, R. Parthasarathy, S. Baroutian, D.J. Gapes, N. Eshtiaghi, Water Res. 114, 254 (2017)CrossRefGoogle Scholar
  34. 34.
    J.C. Baudez, P. Slatter, N. Eshtiaghi, Chem. Eng. J. 215–216, 182 (2013)CrossRefGoogle Scholar
  35. 35.
    S. Baroutian, N. Eshtiaghi, D.J. Gapes, Bioresour. Technol. 140, 227 (2013)CrossRefGoogle Scholar
  36. 36.
    J.C. Baudez, R.K. Gupta, N. Eshtiaghi, P. Slatter, Water Res. 47(1), 173 (2013)CrossRefGoogle Scholar
  37. 37.
    J.B. Liu, D.W. Yu, J. Zhang, M. Yang, Y.W. Wang, Y.T. Wei, J. Tong, Water Res. 98, 98 (2016)CrossRefGoogle Scholar
  38. 38.
    M. Climent, I. Ferrer, M. del Mar Baeza, A. Artola, F. Va´zquez, X. Font, Chem. Eng. J. 133(1–3), 335 (2007)CrossRefGoogle Scholar
  39. 39.
    Y.J. Zhou, M. Takaoka, W. Wang, X. Liu, K. Oshita, J. Biosci. Bioeng. 116(1), 101 (2013)CrossRefGoogle Scholar
  40. 40.
    B. Tang, X.F. Feng, S.S. Huang, L.Y. Bin, F.L. Fu, K.H. Yang, J. Clean. Prod. 148, 537 (2017)CrossRefGoogle Scholar
  41. 41.
    M. Ruiz-Hernando, G. Martinez-Elorza, J. Labanda, J. Llorens, Chem. Eng. J. 230, 102 (2013)CrossRefGoogle Scholar
  42. 42.
    I. Seyssiecq, B. Marrot, D. Djerroud, N. Roche, Chem. Eng. J. 142(1), 40 (2008)CrossRefGoogle Scholar
  43. 43.
    N. Tixier, G. Guibaud, M. Baudu, Bioresour. Technol. 90(2), 215 (2003)CrossRefGoogle Scholar
  44. 44.
    F. Markis, J.C. Baudez, R. Parthasarathy, P. Slatter, N. Eshtiaghi, Chem. Eng. J. 253, 526 (2014)CrossRefGoogle Scholar
  45. 45.
    S. Razmkhah, S.M.A. Razavi, M.A. Mohammadifar, Food Hydrocoll. 63, 404 (2017)CrossRefGoogle Scholar
  46. 46.
    J. Labanda, J. Llorens, Powder Technol. 155(3), 181 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Urban Storm Water System and Water Environment, Ministry of EducationBeijing University of Civil Engineering and ArchitectureBeijingChina
  2. 2.School of Environment and Energy EngineeringBeijing University of Civil Engineering and ArchitectureBeijingChina

Personalised recommendations