Research on Chemical Intermediates

, Volume 44, Issue 9, pp 5075–5089 | Cite as

Preparing graphene oxide–copper composite material from spent lithium ion batteries and catalytic performance analysis

  • Wenxuan Zhang
  • Zhanpeng Liu
  • Chengjian Xu
  • Wenzhi He
  • Guangming Li
  • Juwen Huang
  • Haochen Zhu


The wide use of lithium ion batteries (LIBs) has created much waste, which has become a global issue. It is vital to recycle waste LIBs considering their environmental risks and resource characteristics. Anode graphite from spent LIBs still possess a complete layer structure and contain some oxygen-containing groups between layers, which can be reused to prepare high value-added products. Given the intrinsic defect structure of anode graphite, copper foils in LIB anode electrodes, and excellent properties of graphene, graphene oxide–copper composite material was prepared in this work. Anode graphite was firstly purified to remove organic impurities by calcination and remove lithium. Purified graphite was used to prepare graphene oxide–copper composite material after oxidation to graphite oxide, ultrasonic exfoliation to graphene oxide (GO), and Cu2+ adsorption. Compared with natural graphite, preparing graphite oxide using anode graphite consumed 40% less concentrated H2SO4 and 28.6% less KMnO4. Cu2+ was well adsorbed by 1.0 mg L−1 stable GO suspension at pH 5.3 for 120 min. Graphene oxide–copper composite material could be successfully obtained after 6 h absorption, 3 h bonding between GO and Cu2+ with 3/100 of GO/CuSO4 mass ratio. Compared to CuO, graphene oxide–copper composite material had better catalytic photodegradation performance on methylene blue, and the electric field further improved the photodegradation efficiency of the composite material.


Spent lithium-ion batteries Graphite Graphite oxide Graphene oxide (GO) Graphene oxide–copper composite material 



This work is supported by the Key Research Project of Science and Technology Commission of Shanghai Municipality (12dz2294000). The authors would like to thank the anonymous reviewers for valuable comments.


  1. 1.
    L.H. Saw, K. Somasundaram, Y. Ye, A.A.O. Tay, J. Power Sources 249, 231 (2014)CrossRefGoogle Scholar
  2. 2.
    X. Wang, G. Gaustad, C.W. Babbitt, Waste Manag. 51, 204 (2016)CrossRefGoogle Scholar
  3. 3.
    H. Zou, E. Gratz, D. Apelian, Y. Wang, Green Chem. 15(5), 1183 (2013)CrossRefGoogle Scholar
  4. 4.
    X. Zhang, S.C. Han, P.G. Xiao, C.L. Fan, W.H. Zhang, Carbon 100, 600 (2016)CrossRefGoogle Scholar
  5. 5.
    N.C. Gallego, C.I. Contescu, H.M. Meyer, J.Y. Howe, R.A. Meisner, E.A. Payzant, M.J. Lance, S.Y. Yoon, M. Denlinger, D.L. Wood, Carbon 72, 393 (2014)CrossRefGoogle Scholar
  6. 6.
    D.A. Ferreira, L.M.Z. Prados, D. Majuste, M.B. Mansur, J. Power Sources 187(1), 238 (2009)CrossRefGoogle Scholar
  7. 7.
    X. Zeng, J. Li, N. Singh, Crit. Rev. Environ. Sci. Technol. 44(10), 1129 (2014)CrossRefGoogle Scholar
  8. 8.
    L.P. He, S.Y. Sun, Y.Y. Mu, X.F. Song, J.G. Yu, Acs Sustain. Chem. Eng. 5(1), 714 (2017)CrossRefGoogle Scholar
  9. 9.
    J. Guan, Y.G. Li, Y.G. Guo, R.J. Su, G.L. Gao, H.X. Song, H. Yuan, B. Liang, Z.H. Guo, Acs Sustain. Chem. Eng. 5(1), 1026 (2017)CrossRefGoogle Scholar
  10. 10.
    X.X. Zhang, Q. Xue, L. Li, E. Fan, F. Wu, R.J. Chen, Acs Sustain. Chem. Eng. 4(12), 7041 (2016)CrossRefGoogle Scholar
  11. 11.
    X.P. Chen, C.B. Luo, J.X. Zhang, J.R. Kong, T. Zhou, Acs Sustain. Chem. Eng. 3(12), 3104 (2015)CrossRefGoogle Scholar
  12. 12.
    Z. Sun, H. Cao, Y. Xiao, J. Sietsma, W. Jin, H. Agterhuis, Y. Yang, Acs Sustain. Chem. Eng. 5(1), 21 (2017)CrossRefGoogle Scholar
  13. 13.
    J. Rao, P. Zhang, S. He, Z. Li, H. Ma, Z. Shen, S. Miao, Scientia Sinica Technologica. 47(1), 13 (2017)CrossRefGoogle Scholar
  14. 14.
    H.Y. Du Yilun, X. Lei, F. Zhang, China Min. Mag. 24, 28 (2015)Google Scholar
  15. 15.
    T. Gao, Q. Chen, W. Yu, L. Shen, Resour. Sci. 37(5), 1059 (2015)Google Scholar
  16. 16.
    B. Moradi, G.G. Botte, J. Appl. Electrochem. 46(2), 123 (2016)CrossRefGoogle Scholar
  17. 17.
    Y. Guo, F. Li, H. Zhu, G. Li, J. Huang, W. He, Waste Manag. 51, 227 (2016)CrossRefGoogle Scholar
  18. 18.
    K.V. Ragavan, N.K. Rastogi, Sens. Actuat. B Chem. 229, 570 (2016)CrossRefGoogle Scholar
  19. 19.
    J. Zheng, W. Zhang, Z. Lin, C. Wei, W. Yang, P. Dong, Y. Yan, S. Hu, J. Mater. Chem. B 4(7), 1247 (2016)CrossRefGoogle Scholar
  20. 20.
    X. Zhang, Y. Hu, D. Zhu, A. Xie, Y. Shen, Ceram. Int. 42(1), 1833 (2016)CrossRefGoogle Scholar
  21. 21.
    H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, Sci. Rep. 6, 36143 (2016)CrossRefGoogle Scholar
  22. 22.
    R.Y. Wang, Z.W. Wu, Z.F. Qin, C.M. Chen, H.Q. Zhu, J.B. Wu, G. Chen, W.B. Fan, J.G. Wang, Catal. Sci. Technol. 6(4), 993 (2016)CrossRefGoogle Scholar
  23. 23.
    N.S. Yusof, B. Babgi, Y. Alghamdi, M. Aksu, J. Madhavan, M. Ashokkumar, Ultrason. Sonochem. 29, 568 (2016)CrossRefGoogle Scholar
  24. 24.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45(7), 1558 (2007)CrossRefGoogle Scholar
  25. 25.
    T. Soltani, B.K. Lee, J. Colloid Interface Sci. 481, 168 (2016)CrossRefGoogle Scholar
  26. 26.
    R. Rahimi, M. Moshari, M. Rabbani, A. Azad, Rsc Adv. 6(47), 41156 (2016)CrossRefGoogle Scholar
  27. 27.
    H. Qiao, Study on the Structural Transformation and Electrical Properties of Products Formed by the Oxidation-Reduction of Graphite (in Chinese)[D] (Southwest Univerisity, 2012)Google Scholar
  28. 28.
    D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol. 3(2), 101 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Wenxuan Zhang
    • 1
  • Zhanpeng Liu
    • 1
  • Chengjian Xu
    • 1
  • Wenzhi He
    • 1
  • Guangming Li
    • 1
  • Juwen Huang
    • 1
  • Haochen Zhu
    • 1
  1. 1.State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and EngineeringTongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations