Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 9, pp 4989–4998 | Cite as

Liquid-phase oxidation of toluene to benzaldehyde with molecular oxygen catalyzed by copper nanoparticles supported on graphene

  • Guangliang Song
  • Liang Feng
  • Jie Xu
  • Hongjun Zhu
Article

Abstract

Highly-dispersed copper nanoparticles (Cu NPs) were fabricated on the surface of reduced graphene oxide via direct hydrazine hydrate reduction of Cu2+ in aqueous solution. Scanning electron microscope and transmission electron microscope images show that the Cu NPs are distributed on the surface of graphene nanosheets, and the average particle size was about 40 nm. The Cu NPs supported on graphene have high reaction activity for the oxidation of toluene to corresponding benzaldehyde. It was found that the selectivity reached 66.5% and the conversion of toluene reached 11.5%.

Keywords

Copper nanoparticles Graphene Toluene oxidation 

Notes

Acknowledgements

This work is financially supported by the National key R&D Program of China (2017YFB0307202), the Industry-Academy-Research Prospective joint project of Jiangsu Province (BY2016005-06) and Jiangsu Planned Projects for Postdoctoral Research Funds (1402213C).

References

  1. 1.
    Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22, 3906 (2010)CrossRefGoogle Scholar
  2. 2.
    M. Lee, K. Lee, S. Kim, H. Lee, J. Park, K. Choi, H. Kim, D. Kim, D. Lee, S. Nam, J. Park, Nano Lett. 13, 2814 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Oh, T.G. Kim, S. Kim, Y. Jo, S.S. Lee, K. Kim, B. Ryu, J. Park, Y. Choi, S. Jeong, Chem. Mater. 28, 4714 (2016)CrossRefGoogle Scholar
  4. 4.
    H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari, L. Wang, H.J. Choi, T.D. Chung, N. Lu, T. Hyeon, S.H. Choi, D. Kim, Nat. Nanotech. 11, 566 (2016)CrossRefGoogle Scholar
  5. 5.
    S. Lee, A. Reuveny, J. Reeder, S. Lee, H. Jin, Q. Liu, T. Yokota, T. Sekitani, T. Isoyama, Y. Abe, Z. Suo, T. Someya, Nat. Nanotech. 11, 472 (2016)CrossRefGoogle Scholar
  6. 6.
    Y. Jo, J.Y. Kim, S. Kim, Y. Seo, K. Jang, S.Y. Lee, S. Jung, B. Ryu, H. Kim, J. Park, Y. Choi, S. Jeong, Nanoscale 9, 5072 (2017)CrossRefGoogle Scholar
  7. 7.
    Y. Li, W. Gao, L. Ci, C. Wang, P.M. Ajayan, Carbon 48, 1124 (2010)CrossRefGoogle Scholar
  8. 8.
    D.R. Dreyer, H.P. Jia, C.W. Bielawski, Angew. Chem. Int. Ed. Eng. 49, 6813 (2010)Google Scholar
  9. 9.
    X. Wang, P.F. Fulvio, G.A. Baker, G.M. Veith, R.R. Unocic, S.M. Mahurin, M. Chi, S. Dai, Chem. Commun. 46, 4487 (2010)CrossRefGoogle Scholar
  10. 10.
    G.M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mulhaupt, J. Am. Chem. Soc. 131, 8262 (2009)CrossRefGoogle Scholar
  11. 11.
    S. Guo, S. Dong, Chem. Soc. Rev. 40, 2644 (2011)CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, L. Zhang, C. Zhou, Acc. Chem. Res. 46, 2329 (2013)CrossRefGoogle Scholar
  13. 13.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806 (2010)CrossRefGoogle Scholar
  14. 14.
    K.H. Lee, S. Han, K. Kwon, J.B. Park, J. Colloids Interfaces Sci. 403, 127 (2013)CrossRefGoogle Scholar
  15. 15.
    N. Shang, C. Feng, H. Zhang, S. Gao, R. Tang, C. Wang, Z. Wang, Catal. Commun. 40, 111 (2013)CrossRefGoogle Scholar
  16. 16.
    R. Nie, J. Wang, L. Wang, Y. Qin, P. Chen, Z. Hou, Carbon 50, 586 (2012)CrossRefGoogle Scholar
  17. 17.
    J. Shi, R. Nie, P. Chen, Z. Hou, Catal. Commun. 41, 101 (2013)CrossRefGoogle Scholar
  18. 18.
    K. Szori, R. Puskas, G. Szollosi, I. Bertoti, J. Szepvoelgyi, M. Bartok, Catal. Lett. 143, 539 (2013)CrossRefGoogle Scholar
  19. 19.
    J. Hwang, T. Yoon, S.H. Jin, J. Lee, T. Kim, S.H. Hong, S. Jeon, Adv. Mater. 25, 6724 (2013)CrossRefGoogle Scholar
  20. 20.
    C.O. Ania, M. Seredych, E. Rodriguez-Castellon, T.J. Bandosz, Appl. Catal. B Environ. 163, 424 (2015)CrossRefGoogle Scholar
  21. 21.
    A.S. Nia, S. Rana, D. Doehler, X. Noirfalise, A. Belfiore, W.H. Binder, Chem. Commun. 50, 15374 (2014)CrossRefGoogle Scholar
  22. 22.
    S. Xie, H. Dai, J. Deng, Y. Liu, H. Yang, Y. Jiang, W. Tan, A. Ao, G. Guo, Nanoscale 5, 11207 (2013)CrossRefGoogle Scholar
  23. 23.
    M. Ilyas, M. Sadiq, Catal. Lett. 128, 337 (2009)CrossRefGoogle Scholar
  24. 24.
    G. Huang, J. Luo, C.C. Deng, Y.A. Guo, S.K. Zhao, H. Zhou, S. Wei, Appl. Catal. A Gen. 338, 83 (2008)CrossRefGoogle Scholar
  25. 25.
    K.T.V. Rao, P.S.N. Rao, R. Nagaraju, P.S.S. Prasad, N. Lingaiah, J. Mol. Catal. A Chem. 303, 84 (2009)CrossRefGoogle Scholar
  26. 26.
    F. Wang, J. Xu, X.Q. Li, J. Gao, L.P. Zhou, R. Ohnishi, Adv. Synth. Catal. 347, 1987 (2005)CrossRefGoogle Scholar
  27. 27.
    X.Q. Li, J. Xu, F. Wang, J. Gao, L.P. Zhou, G.Y. Yang, Catal. Lett. 108, 137 (2006)CrossRefGoogle Scholar
  28. 28.
    S. Ghosh, S.S. Acharyya, D. Tripathi, R. Bal, J. Mater. Chem. A 2, 15726 (2014)CrossRefGoogle Scholar
  29. 29.
    F. Zhang, J. Li, Guangdong. Chem. Eng 12, 127 (2017)Google Scholar
  30. 30.
    H. Han, G. Ding, T. Wu, D. Yang, T. Jiang, B. Han, Molecules 20, 12686 (2015)CrossRefGoogle Scholar
  31. 31.
    N. Cao, Y. Zhang, J. Nanomater. 2015, 168125 (2015)Google Scholar
  32. 32.
    A. Dubey, B.G. Mishra, Catal. Commun. 8, 1507 (2007)CrossRefGoogle Scholar
  33. 33.
    L. Jiang, X. Lu, X. Zheng, J. Mater. Sci. Mater. 25, 174 (2014)CrossRefGoogle Scholar
  34. 34.
    Y. Li, X. Huang, Y. Li, Y. Xu, Y. Wang, E. Zhu, X. Duan, Y. Huang, Sci. Rep. 3, 1549 (2013)CrossRefGoogle Scholar
  35. 35.
    J. Ma, J. Yu, W. Chen, A. Zeng, Catal. Lett. 146, 1600 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Chemistry, College of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjingChina

Personalised recommendations