Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 7, pp 4547–4562 | Cite as

Copper-catalyzed C–P cross-coupling of secondary phosphines with (hetero)aromatic bromide

  • Chun-Jing Li
  • Jing Lü
  • Zhi-Xun Zhang
  • Kun Zhou
  • Yan Li
  • Guang-Hui Qi
Article
  • 93 Downloads

Abstract

A novel and convenient approach to the synthesis of various tertiary phosphines via a copper-catalyzed cross-coupling of (hetero)aromatic bromide with secondary phosphines has been developed. The reaction employs cheap copper as the catalyst, 2,6-bis(N-methylaminomethyl)pyridine (L4) as a perfect ligand and KO t Bu as a base; all reactions are carried out under argon atmosphere. A variety of sterically hindered and/or functionalized substrates were found to react under these reaction conditions to provide products in good to excellent yields. Moreover, ten new tertiary phosphines were first reported in this process.

Keywords

Copper-catalyzed C–P bond Phosphorization 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from Hebei Chemical and Pharmaceutical College. The authors are thankful to Hebei University of Science and Technology for elemental, 13C NMR, 1H NMR, 19F NMR, and 31P NMR analysis.

References

  1. 1.
    L.D. Quin, A Guide to Organophosphorus Chemistry (Wiely, New York, 2000)Google Scholar
  2. 2.
    A. Börner, Phosphorus Ligands in Asymmetric Catalysis–Synthesis and Application (Wiley-VCH, Weinheim, 2008)Google Scholar
  3. 3.
    H.A. McManus, P.J. Guiry, Chem. Rev. 4151, 104 (2004)Google Scholar
  4. 4.
    T. Baumgartner, R. Réau, Chem. Rev. 4681, 106 (2006)Google Scholar
  5. 5.
    M.N. Birkholz, Z. Freixa, W.N.M. van Leeuwen, Chem. Soc. Rev. 1099, 38 (2009)Google Scholar
  6. 6.
    W. Tang, X. Zhang, Chem. Rev. 3029, 103 (2003)Google Scholar
  7. 7.
    L. Ye, J. Zhou, Y. Tang, Chem. Soc. Rev. 1140, 37 (2008)Google Scholar
  8. 8.
    C.J. O’Brien, J.L. Tellez, Z.S. Nixon, L.J. Kang, A.L. Carter, S.R. Kunkel, K.C. Przeworski, G.A. Chass, Angew. Chem. Int. Ed. 6836, 48 (2009)Google Scholar
  9. 9.
    G.M. Kosolapoff, L. Maier, Organic Phosphorus Compounds (Wiley, New York, 1972)Google Scholar
  10. 10.
    Y. Zhou, Z.J. Gau, B. Su, J. Li, Z. Duan, F. Mathey, Org. Lett. 5722, 17 (2015)Google Scholar
  11. 11.
    P.W.N.M. van Leeuwen, P.C.J. Kamer, J.N.H. Reek, R. Dierkes, Chem. Rev. 2741, 100 (2000)Google Scholar
  12. 12.
    I.Y. Wan, J.E. McGrath, T. Kashiwagi, ACS Symp. Ser. 29, 599 (1995)Google Scholar
  13. 13.
    B. Buchner, L.B. Lockhart, J. Am. Chem. Soc. 755, 73 (1951)Google Scholar
  14. 14.
    R. Rabinowitz, J. Pellon, J. Org. Chem. 4623, 26 (1961)Google Scholar
  15. 15.
    M. Peer, J.C. de Jong, M. Kiefer, T. Langer, H. Rieck, H. Schell, P. Sennhenn, J. Sprinz, H. Steinhagen, B. Wiese, G. Helmchen, Tetrahedron 7547, 52 (1996)Google Scholar
  16. 16.
    E. Bélanger, M.F. Pouliot, J.F. Paquin, Org. Lett. 2201, 11 (2009)Google Scholar
  17. 17.
    D. Saha, R. Ghosh, A. Sarkar, Tetrahedron 3951, 69 (2013)Google Scholar
  18. 18.
    K.R. Seipel, Z.H. Platt, M. Nguyen, A.W. Holland, J. Org. Chem. 4291, 73 (2008)Google Scholar
  19. 19.
    M. Hayashi, T. Yamasaki, Y. Kobayashi, Y. Imai, Y. Watanabe, Eur. J. Org. Chem. 4956, 29 (2009)Google Scholar
  20. 20.
    I. Wauters, W. Debrouwer, C.V. Stevens, Beilstein J. Org. Chem. 1064, 10 (2014)Google Scholar
  21. 21.
    F. Alonso, Y. Moglie, G. Radivoy, M. Yus, Green Chem. 2699, 14 (2012)Google Scholar
  22. 22.
    Y. Moglie, M.J. González-Soria, I. Martín-García, G. Radivoy, F. Alonso, Green Chem. 4896, 18 (2016)Google Scholar
  23. 23.
    S.E. Tunney, J.K. Stille, J. Org. Chem. 748, 52 (1987)Google Scholar
  24. 24.
    S. Lunot, J. Thibonnet, A. Duchene, J.L. Parrain, Tetrahedron Lett. 8893, 41 (2000)Google Scholar
  25. 25.
    M. Al-Masum, T. Livinghouse, Tetrahedron Lett. 7731, 40 (1999)Google Scholar
  26. 26.
    R.K. Gujadhur, C.G. Bates, D. Venkataraman, Org. Lett. 4315, 3 (2001)Google Scholar
  27. 27.
    F.Y. Kwong, S.L. Buchwald, Org. Lett. 3517, 4 (2002)Google Scholar
  28. 28.
    A. Klapars, J.C. Antilla, X. Huang, S.L. Buchwald, J. Am. Chem. Soc. 7727, 123 (2001)Google Scholar
  29. 29.
    D. Ma, C. Xia, Org. Lett. 2583, 3 (2001)Google Scholar
  30. 30.
    R. Gujadhur, D. Venkataraman, Synth. Commun. 2865, 31 (2001)Google Scholar
  31. 31.
    R. Gujadhur, D. Venkataraman, J. Kintigh, Tetrahedron Lett. 4791, 42 (2001)Google Scholar
  32. 32.
    C. Bates, R. Gujadhur, D. Venkataraman, Org. Lett. 2803, 4 (2002)Google Scholar
  33. 33.
    C. Bates, P. Saejueng, J.M. Murphy, D. Venkataraman, Org. Lett. 4727, 3 (2002)Google Scholar
  34. 34.
    R. Gujadhur, D. Venkataraman, Tetrahedron Lett. 81, 44 (2003)Google Scholar
  35. 35.
    D. Van Allen, D. Venkataraman, J. Org. Chem. 4590, 68 (2003)Google Scholar
  36. 36.
    P. Saejueng, C.G. Bates, D. Venkataraman, Synthesis 1706, 10 (2005)Google Scholar
  37. 37.
    J.F. Marcoux, S. Doye, S.L. Buchwald, J. Am. Chem. Soc. 10539, 119 (1997)Google Scholar
  38. 38.
    M. Wolter, G. Nordmann, G.E. Job, S.L. Buchwald, Org. Lett. 973, 4 (2002)Google Scholar
  39. 39.
    A. Klapars, X.H. Huang, S.L. Buchwald, J. Am. Chem. Soc. 7421, 124 (2002)Google Scholar
  40. 40.
    F.Y. Kwong, A. Klapars, S.L. Buchwald, Org. Lett. 581, 4 (2002)Google Scholar
  41. 41.
    E.J. Hennessy, S.L. Buchwald, Org. Lett. 269, 4 (2002)Google Scholar
  42. 42.
    D. Gelman, L. Jiang, S.L. Buchwald, Org. Lett. 2315, 5 (2003)Google Scholar
  43. 43.
    L. Jiang, G.E. Job, A. Klapars, S.L. Buchwald, Org. Lett. 3667, 5 (2003)Google Scholar
  44. 44.
    A. Shafir, S.L. Buchwald, J. Am. Chem. Soc. 8742, 128 (2006)Google Scholar
  45. 45.
    N. Zheng, S.L. Buchwald, Org. Lett. 4749, 9 (2007)Google Scholar
  46. 46.
    G. Brasche, S.L. Buchwald, Angew. Chem. Int. Edit. 1932, 47 (2008)Google Scholar
  47. 47.
    G.O. Jones, P. Liu, K.N. Houk, S.L. Buchwald, J. Am. Chem. Soc. 6205, 132 (2010)Google Scholar
  48. 48.
    R. Zhu, S.L. Buchwald, Angew. Chem. Int. Edit. 12655, 52 (2013)Google Scholar
  49. 49.
    N. Niljianskl, S. Zhu, S.L. Buchwald, Angew. Chem. Int. Edit. 1638, 54 (2015)Google Scholar
  50. 50.
    M.W.J. Gribble, M.T. Pirnot, J.S. Bandar, R.Y. Liu, S.L. Buchwald, J. Am. Chem. Soc. 2192, 139 (2017)Google Scholar
  51. 51.
    V. Hornillos, M. Pérez, M.-M. Faňanás, B.L. Feringa, Chem. Eur. J. 5432, 19 (2013)Google Scholar
  52. 52.
    G.B. Hu, Y.X. Gao, Y.F. Zhao, Org. Lett. 4464, 16 (2014)Google Scholar
  53. 53.
    J. Ke, Y.L. Tang, H. Yi, Y.L. Li, Y.D. Cheng, C. Liu, A.W. Lei, Angew. Chem. Int. Edit. 6604, 54 (2015)Google Scholar
  54. 54.
    R. Beaud, R.J. Phipps, M.J. Gaunt, J. Am. Chem. Soc. 138, 40 (2016)CrossRefGoogle Scholar
  55. 55.
    P. Ortiz, J.F. Collados, R.P. Jumde, E. Otten, S.R. Harutyunyan, Angew. Chem. Int. Edit. 3041, 56 (2017)Google Scholar
  56. 56.
    J.J. Becker, M.R. Gagne, Organometallics 4984, 22 (2003)Google Scholar
  57. 57.
    I.P. Beletskaya, A.V. Cheprakov, Coord. Chem. Rev. 2337, 248 (2004)Google Scholar
  58. 58.
    S. Thielges, P. Bisseret, J. Bisseret, Org. Lett. 681, 7 (2005)Google Scholar
  59. 59.
    C. Huang, X. Tang, H. Fu, Y. Jiang, Y. Zhao, J. Org. Chem. 5020, 71 (2006)Google Scholar
  60. 60.
    H. Rao, Y. Jin, H. Fu, Y. Jiang, Y. Zhao, Chem. Eur. J. 3636, 12 (2006)Google Scholar
  61. 61.
    Y. Gao, G. Wang, L. Chen, P. Chen, Y. Zhao, Y. Zhou, L.B. Han, J. Am. Chem. Soc. 7956, 131 (2009)Google Scholar
  62. 62.
    C.H. Lin, Y. Chi, M.W. Chung, Y.J. Chen, K.W. Wang, G.H. Lee, P.T. Chou, W.Y. Hung, H.C. Chiu, Dalton Trans. 1132, 40 (2011)Google Scholar
  63. 63.
    Y.H. Li, S. Das, S.L. Zhou, K. Junge, M. Beller, J. Am. Chem. Soc. 9727, 134 (2012)Google Scholar
  64. 64.
    B.Q. Xiong, M. Li, Y.X. Liu, Y.B. Zhou, C.Q. Zhao, M. Goto, S.F. Yin, L.B. Han, Adv. Synth. Catal. 781, 356 (2014)Google Scholar
  65. 65.
    H. Tinnermann, C. Wille, D.M. Alcarazo, Angew. Chem. Int. Edit. 8732, 53 (2014)Google Scholar
  66. 66.
    D.P. Zhao, T.M. Neubauer, B.L. Feringa, Nat. Commun. 6652, 6 (2015)Google Scholar
  67. 67.
    T. Ghosh, P. Maity, D. Kundu, B.C. Ranu, New J. Chem. 9556, 40 (2016)Google Scholar
  68. 68.
    P.B. Zhang, L.L. Zhang, Y.Z. Gao, G. Tang, Y.F. Zhao, RSC Adv. 60992, 6 (2016)Google Scholar
  69. 69.
    P.H.S. Paioti, K.A. Abboud, A. Aponick, ACS Catal. 2133, 7 (2017)Google Scholar
  70. 70.
    S. Kaye, J.M. Fox, F.A. Hicks, S.L. Buchwald, Adv. Synth. Catal. 789, 343 (2001)Google Scholar
  71. 71.
    D. Ma, Y. Zhang, J. Yao, S. Wu, F. Tao, J. Am. Chem. Soc. 12459, 120 (1998)Google Scholar
  72. 72.
    R.A. Altman, E.D. Koval, S.L. Buchwald, J. Org. Chem. 6190, 72 (2007)Google Scholar
  73. 73.
    R. Martin, S. Buchwald, Acc. Chem. Res. 1461, 41 (2008)Google Scholar
  74. 74.
    G. Evano, N. Blanchard, M. Toumi, Chem. Rev. 3054, 108 (2008)Google Scholar
  75. 75.
    F. Monnier, M. Taillefer, Angew. Chem. Int. Ed. 6954, 48 (2009)Google Scholar
  76. 76.
    M. Jahjah, M. Alame, S.P. Rostating, M. Lemaire, Tetrahedron Asymmetry 2305, 18 (2007)Google Scholar
  77. 77.
    H.R. Hays, J. Org. Chem. 3690, 33 (1968)Google Scholar
  78. 78.
    M.J.P. Harger, S. Westlake, Tetrahedron 1511, 38 (1982)Google Scholar
  79. 79.
    N.T. McDougal, J. Streuff, H. Mukherjee, S.C. Virgil, B.M. Stoltz, Tetrahedron Lett. 5550, 51 (2010)Google Scholar
  80. 80.
    A. Christiansen, C. Li, M. Garland, D. Selent, R. Ludwing, A. Spannenberg, W. Baumann, R. Franke, A. Börner, Eur. J. Org. Chem. 2733, 14 (2010)Google Scholar
  81. 81.
    Z.Y. Huang, Z. Liu, J.R. Zhou, J. Am. Chem. Soc. 15882, 133 (2011)Google Scholar
  82. 82.
    M. Sander, Chem. Ber. 93, 1220 (1960)CrossRefGoogle Scholar
  83. 83.
    T.L. Emmick, R.L. Letsinger, J. Am. Chem. Soc. 3459, 90 (1968)Google Scholar
  84. 84.
    C.A. Busacca, J.C. Lorenz, N. Grinberg, N. Haddad, M. Hrapchak, B. Latli, H. Lee, P. Sabila, A. Saha, M. Sarvestani, S. Shen, R. Varsolona, X.D. Wei, C.H. Senanayake, Org. Lett. 4277, 7 (2005)Google Scholar
  85. 85.
    Z. Herseczki, I. Gergely, C. Hegedüs, Á. Szöllősy, J. Bakos, Tetrahedron Asymmetry 1673, 15 (2004)Google Scholar
  86. 86.
    H. Gulyás, J.B. Buchholz, E.C. Escudero-Adan, Z. Freixa, P.W. van Leeuwen, Chem. Eur. J. 3424, 13 (2007)Google Scholar
  87. 87.
    H.M. Walborsky, M. Topolski, J. Am. Chem. Soc. 3455, 114 (1992)Google Scholar
  88. 88.
    R.G. Yu, X.Y. Chen, S.F. Martin, Z.Q. Wang, Org. Lett. 1808, 19 (2017)Google Scholar
  89. 89.
    H. Lebel, V. Paquet, J. Am. Chem. Soc. 320, 126 (2004)Google Scholar
  90. 90.
    J. Li, H.W. Fu, P. Hu, Z.L. Zhang, X. Li, Y.X. Cheng, Chem. Eur. J. 13941, 18 (2012)Google Scholar
  91. 91.
    M. Murata, S.L. Buchwald, Tetrahedron 60, 7397 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Environmental EngineeringHebei Chemical and Pharmaceutical CollegeShijiazhuangChina

Personalised recommendations