Research on Chemical Intermediates

, Volume 44, Issue 7, pp 4533–4546 | Cite as

Investigation the catalytic activity of nanofibrillated and nanobacterial cellulose sulfuric acid in synthesis of dihydropyrimidoquinolinetriones

  • Kobra Nikoofar
  • Hannaneh Heidari
  • Yeganeh Shahedi


Two novel types of nanocellulose-based catalyst, viz. nanofibrillated cellulose sulfuric acid (s-NFC) and nanobacterial cellulose sulfuric acid (s-BC), were prepared by a simple method and characterized by Fourier-transform infrared spectroscopy, transmission electron microscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction anlaysis, and nitrogen adsorption measurements. The catalytic activity of these two bio-based solid acid catalysts was examined in a one-pot, four-component coupling reaction of barbituric acid, dimedone, aryl aldehydes, and (hetero)aromatic amines in refluxing ethanol. The results confirmed that s-BC promoted the speed of the mentioned reaction more than s-NFC. The recovery and reusability of the degradable nanostructures showed that they could be used in at least three runs without loss of activity.


Nanofibrillated cellulose Bacterial cellulose Dihydropyrimidoquinolinetriones Four-component reaction Dimedone Barbituric acid 



The researchers greatly appreciate the Research of Alzahra University for their financial support of this study.


  1. 1.
    W. Chen, H. Yu, Y. Liu, P. Chen, M. Zhang, Y. Hai, Carbohyd. Polym. 83, 1804 (2011)CrossRefGoogle Scholar
  2. 2.
    S.Y. Lee, D.J. Mohan, I.A. Kang, G.H. Doh, S. Lee, S.O. Han, Fiber. Polym. 10, 77 (2009)CrossRefGoogle Scholar
  3. 3.
    A. Rahmatpour, React. Funct. Polym. 71, 80 (2011)CrossRefGoogle Scholar
  4. 4.
    N.Y. Baran, T. Baran, A. Mentes, Appl. Catal. A-Gen. 531, 36 (2017)CrossRefGoogle Scholar
  5. 5.
    R.H. Vekariya, H.D. Patel, ARKIVOC 1, 136 (2015)Google Scholar
  6. 6.
    A. Zonouzi, Z. Izakian, K. Abdi, S.W. Ng, Helv. Chim. Acta 99, 355 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Maddila, M. Momin, P. Lavanya, C.V. Rao, J. Saudi Chem. Soc. 20, 173 (2016)CrossRefGoogle Scholar
  8. 8.
    S.M. Gomha, S.M. Riyadh, J. Braz. Chem. Soc. 26, 916 (2015)Google Scholar
  9. 9.
    K.Y. Lee, T. Tammelin, K. Schulfter, H. Kiiskinen, J. Samela, A. Bismarck, ACS Appl. Mater. Interfaces 4, 4078 (2012)CrossRefGoogle Scholar
  10. 10.
    C. Wu, W. Lu, G. Zhang, R. Yuan, X. Xiong, J. Zhang, Mater. Chem. A 1, 8645 (2013)CrossRefGoogle Scholar
  11. 11.
    X. Wu, C. Lu, Z. Zhou, G. Yuan, R. Xiong, X. Zhang, Environ. Sci. NANO 1, 71 (2014)CrossRefGoogle Scholar
  12. 12.
    Y. Han, X. Wu, X. Zhang, Z. Zhou, C. Lu, ACS Sustain. Chem. Eng. 4, 6322 (2016)CrossRefGoogle Scholar
  13. 13.
    M.V.G. Zimmermann, C. Borsoi, A. Lavoratti, M. Zanini, A.J. Zattera, R.M.C. Santana, J. Reinf. Plast. Compos. 35, 628 (2016)CrossRefGoogle Scholar
  14. 14.
    M.B. Agustin, F. Nakatsubo, H. Yano, Cellulose 23, 451 (2016)CrossRefGoogle Scholar
  15. 15.
    K.Y. Lee, Y. Aitomaki, L.A. Berglund et al., Compos. Sci. Technol. 105, 15 (2014)CrossRefGoogle Scholar
  16. 16.
    I. Ugi, Isonitrile Chemistry (Academic, London, 1971)Google Scholar
  17. 17.
    R. Kaur, P. Kaur, S. Sharma, G. Singh, S. Mehndiratta, P.M.S. Bedi, K. Nepali, Recent Pat. Anticancer Drug. Discov. 10, 23 (2015)CrossRefGoogle Scholar
  18. 18.
    N.A. Al-Masoudi, Y.A. March, J.J. Al-Ameri, D.S. Ali, Ch. Pannecouque, Chem. Biol. Inter. 6, 69 (2016)Google Scholar
  19. 19.
    W. Armarego, The Chemistry of Heterocyclic Compounds; Fused Pyrimidines (Wiley-Interscience, New York/London, 2009)Google Scholar
  20. 20.
    J.H. Lister, The Chemistry of Heterocyclic Compounds; Fused Pyrimidines; In The Purines (Wiley-Interscience, New York/London, 2009)Google Scholar
  21. 21.
    D.J. Brown, The Chemistry of Heterocyclic Compounds In The Pyrimidines, vol. 52 (Wiley-Interscience, New York, 2009)Google Scholar
  22. 22.
    A. Oliva, G. Zimmermann, H. W. Krell, International Patent WO 98/58925 (1998)Google Scholar
  23. 23.
    J.P. De La Cruz, T. Carrasco, G. Ortega, F.S. De La Cousta, Lipids 27, 192 (1992)CrossRefGoogle Scholar
  24. 24.
    Y.S. Sanghhvi, S.B. Larson, S.S. Matsumoto, J. Med. Chem. 32, 629 (1989)CrossRefGoogle Scholar
  25. 25.
    R.B. Tenser, A. Gaydos, K.A. Hay, Antimicrob. Agents Chemother. 45, 3657 (2001)CrossRefGoogle Scholar
  26. 26.
    A. Khalafi-Nezhad, F. Panahi, Synthesis 6, 0984 (2011)CrossRefGoogle Scholar
  27. 27.
    S.C. Jadhvar, H.M. Kasraliker, S.V. Goswami, S.R. Bhusare, World J. Pharm. Pharm. Sci. 4, 1106 (2016)Google Scholar
  28. 28.
    B. Sadeghi, M.H. Sowlat Tafti, J. Iran. Chem. Soc. 13, 1375 (2016)CrossRefGoogle Scholar
  29. 29.
    H. Yousefi, M. Mashkour, R. Yousefi, Cellulose 22, 1189 (2015)CrossRefGoogle Scholar
  30. 30.
    H. Yousefi, S. Hejazi, M. Mousavi, Y. Azusa, A.H. Heidari, Ind. Crops Prod. 43, 732 (2013)CrossRefGoogle Scholar
  31. 31.
    B. Liu, Z. Zhang, K. Huang, Cellulose 20, 2081 (2013)CrossRefGoogle Scholar
  32. 32.
    K.M. Hello, H.R. Hasan, M.H. Sauodi, Appl. Catal. A 475, 226 (2014)CrossRefGoogle Scholar
  33. 33.
    K.-Y. Lee, T. Tammelin, K. Schulfter, H. Kiiskinen, J. Samela, A. Bismarck, ACS Appl. Mater. Interface 4, 4078 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Physics and ChemistryAlzahra UniversityVanak, TehranIran

Personalised recommendations