Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 7, pp 4519–4531 | Cite as

Nano-cellulose/BF3/Fe3O4: a magnetic bio-based nano-catalyst for the synthesis of pyrimido[2,1-b]benzothiazoles under solvent-free conditions

Article
  • 23 Downloads

Abstract

Nano-cellulose/BF3/Fe3O4 is a bio-based and eco-friendly catalyst with high catalytic activity. Easy separation with an external magnet and recyclability without significant loss of its activity are some advantages of this catalyst. Nano-cellulose/BF3/Fe3O4 was characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray fluorescence, vibrating sample magnetometry, thermogravimetric analysis, and BET theory. The catalyst was applied for the synthesis of 4H-pyrimido[2,1-b]benzothiazole derivatives via one-pot condensation of aldehydes, 2-aminobenzothiazol and ethyl acetoacetate, under solvent-free conditions at 100 °C. This method offers several advantages including easy work-up, excellent yields and short reaction time.

Graphical Abstract

Keywords

Nano-cellulose/BF3/Fe3O4 Bio-based catalyst Magnetic nano-catalyst 4H-pyrimido[2,1-b]benzothiazole 

Notes

Acknowledgement

The Research Council of Yazd University is gratefully acknowledged for the financial support for this work.

Supplementary material

11164_2018_3401_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2103 kb)

References

  1. 1.
    B.M. Reddy, P.M. Sreekanth, P. Lakshmanan, J. Mol. Catal. A Chem. 237, 93 (2005)CrossRefGoogle Scholar
  2. 2.
    J.H. Clark, Acc. Chem. Res. 35, 791 (2002)CrossRefGoogle Scholar
  3. 3.
    N. Lin, A. Dufresne, Eur. Polym. J. 59, 302 (2014)CrossRefGoogle Scholar
  4. 4.
    W.K. Czaja, D.J. Young, M. Kawecki, R.M. Brown, Biomacromolecules 8, 1 (2007)CrossRefGoogle Scholar
  5. 5.
    M. Patchan, J. Graham, Z. Xia, J. Maranchi, R. McCally, O. Schein, J. Elisseeff, M. Trexler, Mater. Sci. Eng. C 33, 3069 (2013)CrossRefGoogle Scholar
  6. 6.
    C. Salas, T. Nypelö, C. Rodriguez-Abreu, C. Carrillo, O.J. Rojas, Curr. Opin. Colloid Interface Sci. 19, 383 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Jorfi, E.J. Foster, J. Appl. Polym. Sci. 132, 14 (2015)CrossRefGoogle Scholar
  8. 8.
    J.O. Zoppe, V. Ruottinen, J. Ruotsalainen, S. Rönkkö, L.-S. Johansson, A. Hinkkanen, K. Järvinen, J. Seppälä, Biomacromolecules 15, 1534 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Kaushik, A. Moores, Green Chem. 18, 622 (2016)CrossRefGoogle Scholar
  10. 10.
    S. Shylesh, V. Schünemann, W.R. Thiel, Angew. Chem. Int. Ed. 49, 3428 (2010)CrossRefGoogle Scholar
  11. 11.
    X. Zheng, S. Luo, L. Zhang, J.-P. Cheng, Green Chem. 11, 455 (2009)CrossRefGoogle Scholar
  12. 12.
    S. Mukherjee, A. Kundu, A. Pramanik, Tetrahedron Lett. 57, 2103 (2016)CrossRefGoogle Scholar
  13. 13.
    M.N. Bhoi, M.A. Borad, E.A. Pithawala, H.D. Patel, Arab. J. Chem. 9 (2016).  https://doi.org/10.1016/j.arabjc.2016.01.012
  14. 14.
    M.H. Youssoufi, P.K. Sahu, P.K. Sahu, D.D. Agarwal, M. Ahmad, M. Messali, S. Lahsasni, T.B. Hadda, Med. Chem. Res. 24, 2381 (2015)CrossRefGoogle Scholar
  15. 15.
    R. Ali, N. Siddiqui, J. Chem. 2013, 1 (2013)Google Scholar
  16. 16.
    M.A. El-Sherbeny, Arzneimittelforschung 50, 848 (2000)Google Scholar
  17. 17.
    P.K. Sahu, P.K. Sahu, S. Gupta, D. Thavaselvam, D. Agarwal, Eur. J. Med. Chem. 54, 366 (2012)CrossRefGoogle Scholar
  18. 18.
    S. Gupta, N. Ajmera, N. Gautam, R. Sharma, D. Gautam, Indian J. Chem. Sect. B 06, 853 (2009)Google Scholar
  19. 19.
    P.K. Sahu, P.K. Sahu, J. Lal, D. Thavaselvam, D. Agarwal, Med. Chem. Res. 21, 3826 (2012)CrossRefGoogle Scholar
  20. 20.
    M.T. Gabr, N.S. El-Gohary, E.R. El-Bendary, M.M. El-Kerdawy, Eur. J. Med. Chem. 85, 576 (2014)CrossRefGoogle Scholar
  21. 21.
    J. Yevich, D. Temple Jr., R. Covington, D. Owens, R. Seidehamel, K. Dungan, J. Med. Chem. 25, 864 (1982)CrossRefGoogle Scholar
  22. 22.
    M. Kale, D. Mene, Int. J. Pharma Bio Sci. 4, 503 (2013)Google Scholar
  23. 23.
    V. Deshmukh, P. Raviprasad, P. Kulkarni, S. Kuberkar, Int. J. Chem. Tech. Res. 3, 136 (2011)Google Scholar
  24. 24.
    M. Yadav, V.K. Deshmukh, S.R. Chaudhari, Int. J. Pharm. Sci. Rev. Res. 22, 41 (2013)Google Scholar
  25. 25.
    A. Shaabani, A. Rahmati, S. Naderi, Bioorg. Med. Chem. Lett. 15, 5553 (2005)CrossRefGoogle Scholar
  26. 26.
    A.B. Atar, Y.S. Jeong, Y.T. Jeong, Tetrahedron 70, 5207 (2014)CrossRefGoogle Scholar
  27. 27.
    S.R. Vaidya, J.J. Chamergore, Chem. Biol. Interface 6, 47 (2016)Google Scholar
  28. 28.
    L. Nagarapu, H.K. Gaikwad, J.D. Palem, R. Venkatesh, R. Bantu, B. Sridhar, Synth. Commun. 43, 93 (2013)CrossRefGoogle Scholar
  29. 29.
    P.K. Sahu, P.K. Sahu, D.D. Agarwal, RSC Adv. 3, 9854 (2013)CrossRefGoogle Scholar
  30. 30.
    P.K. Sahu, P.K. Sahu, Y. Sharma, D.D. Agarwal, J. Heterocycl. Chem. 51, 1193 (2014)CrossRefGoogle Scholar
  31. 31.
    S. Azad, B.B.F. Mirjalili, RSC Adv. 6, 96928 (2016)CrossRefGoogle Scholar
  32. 32.
    S. Azad, B.B.F. Mirjalili, Res. Chem. Intermed. 43, 3 (2017)CrossRefGoogle Scholar
  33. 33.
    A.B. Atar, Y.T. Jeong, Mol. Divers. 18, 389 (2014)CrossRefGoogle Scholar
  34. 34.
    P.K. Sahu, P.K. Sahu, R. Jain, R. Yadav, D.D. Agarwal, Catal. Sci. Technol. 2, 2465 (2012)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, College of ScienceYazd UniversityYazdIslamic Republic of Iran

Personalised recommendations