Research on Chemical Intermediates

, Volume 44, Issue 7, pp 4469–4482 | Cite as

Al&Fe2O3@NO2–Ph–PMO nanocomposite: candidate as a new energetic metastable intermolecular material

  • Mostafa Golshekan
  • Farhad Shirini


In the present study, the synthesis of electromagnetic absorber hybrid organic–inorganic mesoporous Al&Fe2O3@NO2–Ph–PMO nanocomposite as a new class of nanoenergetic materials with large density of NO2 groups is investigated. For this purpose, the Al&Fe2O3@NO2–Ph–PMO nanocomposite is prepared in five steps: (1) preparation of hybrid organic–inorganic mesoporous Ph–PMO via sol–gel method, (2) incorporation of NO2 moieties on the surface of Ph–PMO by nitration reaction, (3) preparation of iron oxide magnetite nanoparticles (Fe3O4-MNPs) via a chemical precipitation method and thermotransfer to hematite (Fe2O3-MNPs), (4) development of the nanocomposite embedded Fe2O3-MNPs on the surface of hybrid organic–inorganic NO2–Ph–PMO mesoporous structure by ultrasonic method and finally, (5) the preparation and incorporation of Al nanoparticles (as a fuel in thermite reaction) on the surface of Fe2O3@NO2–Ph–PMO using the ultrasound-assisted method which leads to a high energetic nanocomposite propellant, Al&Fe2O3@NO2–Ph–PMO, based superthermite concept. All, the higher loading of the NO2 group on the vast specific surface area of PMO, the electromagnetic absorption property and superthermite character of the nanocomposite are improved and reported in this paper. Finally, the texture and structure of the prepared energetic metastable intermolecular nanocomposite are characterized by FT-IR, XRD, TEM, VSM and N2 sorption analysis.


Hybrid organic–inorganic mesoporous Magnetic nanocomposite Nanoenergetic materials 



The authors acknowledge the University of Guilan, Research Council and Iran National Science Foundation for supporting (Project Number: 94027265) for this work.


  1. 1.
    X. Li, JOM 59, 71 (2007)CrossRefGoogle Scholar
  2. 2.
    H. Goesmann, C. Feldmann, Angew. Chem. Int. Ed. 49, 1362 (2010)CrossRefGoogle Scholar
  3. 3.
    A. Smith, S. Nie, Acc. Chem. Res. 43, 190 (2010)CrossRefGoogle Scholar
  4. 4.
    U. Simon, Adv. Mater. 10, 1487 (1998)CrossRefGoogle Scholar
  5. 5.
    N. Toshima, Y. Shiraishi, T. Teranishi, M. Miyake, T. Tominaga, H. Watanabe, W. Brijoux, H. Bonnemann, G. Schmid, Appl. Organomet. Chem. 15, 178 (2001)CrossRefGoogle Scholar
  6. 6.
    I.I. Moiseev, T.A. Stromnova, M.N. Vargafik, S.T. Orlova, T.V. Chernysheva, I.P. Stolarov, Catal. Today 51, 595 (1999)CrossRefGoogle Scholar
  7. 7.
    S. Behrens, G. Spittel, Dalton Trans. 21, 868 (2005)CrossRefGoogle Scholar
  8. 8.
    A.H. Lu, E.L. Salabas, F. Schüth, Angew. Chem. Int. Ed. 46, 1222 (2007)CrossRefGoogle Scholar
  9. 9.
    Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D Appl. Phys. 36, 167 (2003)CrossRefGoogle Scholar
  10. 10.
    C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992)CrossRefGoogle Scholar
  11. 11.
    F. Hoffmann, M. Cornelius, J. Morrel, M. Fröba, Angew. Chem. Int. Ed. 45, 3216 (2006)CrossRefGoogle Scholar
  12. 12.
    B. Karimi, H.M. Mirzaei, A. Mobaraki, Catal. Sci. Technol. 2, 828 (2012)Google Scholar
  13. 13.
    B.J. Melde, B.T. Holland, C.F. Blanford, A. Stein, Chem. Mater. 11, 3302 (1999)CrossRefGoogle Scholar
  14. 14.
    S. Fujita, S. Inagaki, Chem. Mater. 20, 891 (2008)CrossRefGoogle Scholar
  15. 15.
    R.P. Singh, R.D. Verma, D.T. Meshri, J.M. Shreeve, Angew. Chem. Int. Ed. 45, 3584 (2006)CrossRefGoogle Scholar
  16. 16.
    G.A. Olah, S.J. Kuhn, Friedel-Crafts and Related Reactions, vol. 2 (Wiley-Interscience, New York, 1964)Google Scholar
  17. 17.
    R.W. Armstrong, B. Baschung, D.W. Booth, M. Samirant, Nano Lett. 3, 253 (2003)CrossRefGoogle Scholar
  18. 18.
    R.A. Yetter, G.A. Risha, S.F. Son, Proc. Combust. Inst. 32, 1819 (2009)CrossRefGoogle Scholar
  19. 19.
    V.E. Sanders, B.W. Asay, T.J. Foley, B.C. Tappan, A.N. Pacheco, S.F. Son, J. Propuls. Power 23, 707 (2007)CrossRefGoogle Scholar
  20. 20.
    J.A. Martin, A.S. Murray, J.R. Busse, Warhead Technol. 33, 179 (1998)Google Scholar
  21. 21.
    H. How, C. Vittoria, J. Appl. Phys. 69, 5183 (1991)CrossRefGoogle Scholar
  22. 22.
    T. Nakamura, J. Appl. Phys. 88, 348 (2000)CrossRefGoogle Scholar
  23. 23.
    L. Sung-Gap, L. Sung-Soo, L. Young-Hie, J. Korean Phys. Soc. 41, 236 (2002)Google Scholar
  24. 24.
    S.R. Ghanta, K. Muralidharan, J. Nanopart. Res. 15, 1 (2013)CrossRefGoogle Scholar
  25. 25.
    A. Mobaraki, B. Movassagh, B. Karimi, Appl. Catal. A Gen. 472, 123 (2014)CrossRefGoogle Scholar
  26. 26.
    K.B. Plantier, M.L. Pantoya, A.E. Gash, Combust. Flame 140, 299 (2005)CrossRefGoogle Scholar
  27. 27.
    A.J. Puszynski, C.J. Bulian, J.J. Swiatkiewicz, J. Propuls. Power 23, 698 (2007)CrossRefGoogle Scholar
  28. 28.
    M.L. Pantoya, J.J. Granier, Pyrotechnics 30, 53 (2005)CrossRefGoogle Scholar
  29. 29.
    T. Tillotson, J. Non Cryst. Solids 285, 338 (2001)CrossRefGoogle Scholar
  30. 30.
    A.E. Gash, Chem. Mater. 13, 999 (2001)CrossRefGoogle Scholar
  31. 31.
    S. Apperson, Appl. Phys. Lett. 91, 243 (2007)CrossRefGoogle Scholar
  32. 32.
    B. Mehendale, J. Energ. Mater. 24, 341 (2006)CrossRefGoogle Scholar
  33. 33.
    E.L. Dreizin, Prog. Energy Combust. Sci. 35, 141 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, College of SciencesUniversity of GuilanRashtIran

Personalised recommendations