Research on Chemical Intermediates

, Volume 44, Issue 7, pp 4397–4413 | Cite as

Copper incorporated mesoporous materials: synthesis, characterization and catalytic activity in benzaldehyde reduction

  • O. Zekri
  • A. Saadi
  • F. Launay
  • C. Calers
  • C. Rabia


Copper substituted mesoporous silica materials (Cu–HMS-n), with a variety of Si/Cu atomic ratios (n) ranging from 50 to 100, were synthesized by the one-pot sol–gel method using dodecylamine as template. These materials were characterized by X-ray diffraction, N2 adsorption-desorption, transmission electron microscopy, ultraviolet and visible diffuse reflectance spectroscopy, H2 temperature-programmed reduction, inductively coupled plasma-optical emission spectrometry, thermal analysis and X-ray photoelectron spectroscopy. All the samples showed worm-like mesoporous structures with surface areas higher than 700 m2 g−1 and pore volumes higher than 0.75 cm3 g−1. The catalytic activity of these materials in the reduction of benzaldehyde was evaluated. Effects of the Si/Cu atomic ratio in the catalyst and the influence of time and reaction temperature on the catalytic activity were investigated. Best catalytic performance was obtained with Cu–HMS-50 with a benzaldehyde conversion of 56% and a selectivity of 28% to benzyl alcohol.


Cu-incorporating mesoporous materials Copper Benzaldehyde Benzyl alcohol Hydrogenation 



The authors thank the Ministry of Scientific Research (Algeria) for the research grant and the LRS group (Surface Reactivity Laboratory) at UMR CNRS 7197 at Pierre et Marie Curie University Paris VI (France) for their collaboration.


  1. 1.
    S. Pugh, R. Mckenna, I. Halloum, D.R. Nielson, Metab. Eng. Com. 2, 39 (2015)CrossRefGoogle Scholar
  2. 2.
    J. Scognamiglio, L. Jones, D. Vitale, C.S. Letizia, A.M. Api, Food Chem. Toxicol. 50, S140 (2012)CrossRefGoogle Scholar
  3. 3.
    Y. Zhou, J. Liu, X. Li, X. Pan, X. Bao, J. Nat. Gas Chem. 21, 241 (2012)CrossRefGoogle Scholar
  4. 4.
    M. Li, X. Wang, N. Perret, M.A. Keane, Catal. Commun. 46, 187 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Niederberger, M.H. Bartl, G.D. Stucky, J. Am. Chem. Soc. 124, 16642 (2002)CrossRefGoogle Scholar
  6. 6.
    R. Nesper, H. Muhr, Chimia 52, 571 (1998)Google Scholar
  7. 7.
    F. Breuhne, E. Wright, Ullmann’s Encyclopedia Ind. Chem. 5, 357 (2012)Google Scholar
  8. 8.
    T.J. Bhanushali, I. Kainthla, R.S. Keri, B.M. Nagaraja, Chem. Select. 1, 3839 (2016)Google Scholar
  9. 9.
    M.A. Keane, J. Mol. Cat. A Chem. I18, 261 (1997)CrossRefGoogle Scholar
  10. 10.
    N. Haddad, A. Saadi, A. Löfberg, R.N. Vannier, E. Bordes-Richard, C. Rabia, J. Mol. Cat. A Chem. 396, 207 (2015)CrossRefGoogle Scholar
  11. 11.
    A. Saadi, Z. Rassoul, M.M. Bettahar, J. Mol. Cat. A Chem. 164, 205 (2000)CrossRefGoogle Scholar
  12. 12.
    B. Zhang, S. Hui, S. Zhang, Y. Li, W. Li, D. Fang, J. Nat. Gas Chem. 21, 563 (2012)CrossRefGoogle Scholar
  13. 13.
    A.Y. Yin, X.Y. Guo, W.L. Dai, H.X. Li, K.N. Fan, Appl. Catal. A Gen. 349, 91 (2008)CrossRefGoogle Scholar
  14. 14.
    A.Y. Yin, X.Y. Guo, W.L. Dai, Chem. Cat. Chem. 2, 206 (2010)Google Scholar
  15. 15.
    T.B. Jayesh, K. Itika, G.V. Ramesh Babu, K.S. Rama Rao, R.S. Keri, A.H. Jadhav, B.M. Nagaraja, Catal. Commun. 106, 73 (2018)CrossRefGoogle Scholar
  16. 16.
    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonawicz, C.T. Kresge, K.D. Schmitt, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992)CrossRefGoogle Scholar
  17. 17.
    C.T. Kresge, M.E. Leonawicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992)CrossRefGoogle Scholar
  18. 18.
    Q. Huo, D.I. Margolese, U. Ciesla, P. Feng, T.E. Gier, P. Sieger, R. Leon, P.M. Petroff, F. Schuth, G.D. Stucky, Nature 368, 317 (1994)CrossRefGoogle Scholar
  19. 19.
    Q. Huo, D.J. Margoles, U. Ciesla, D.G. Demuth, P. Feng, T.E. Gier, P. Sieger, A. Firouzi, B.F. Chmelka, Chem. Mat. 6, 1176 (1994)CrossRefGoogle Scholar
  20. 20.
    P.T. Tanev, T.J. Pinnavaia, Science 267, 865 (1995)CrossRefGoogle Scholar
  21. 21.
    P.T. Tanev, T.J. Pinnavaia, Chem. Mat. 8, 2068 (1996)CrossRefGoogle Scholar
  22. 22.
    W. Zhang, T.R. Pauly, T.J. Pinnavaia, Chem. Mat. 9, 2491 (1997)CrossRefGoogle Scholar
  23. 23.
    T.R. Pauly, Y. Liu, T.J. Pinnavaia, S.J.L. Billinge, T.P. Rieker, J. Am. Chem. Soc. 121, 8835 (1999)CrossRefGoogle Scholar
  24. 24.
    P.T. Tanev, M. Chibwe, T.J. Pinnavaia, Nature 368, 321 (1994)CrossRefGoogle Scholar
  25. 25.
    H. Liu, G. Lu, Y. Guo, J. Wang, Nanotechnology 17, 997 (2006)CrossRefGoogle Scholar
  26. 26.
    P. Kustrowski, L. Chmielarz, R. Dziembaj, P. Cool, E.F. Vansani, J. Phys. Chem. B 109, 11552 (2005)CrossRefGoogle Scholar
  27. 27.
    Z. Fu, J. Chen, D. Yin, L. Zhang, Y. Zhang, Catal. Lett. 66, 105 (2000)CrossRefGoogle Scholar
  28. 28.
    S.A. Kozlova, S.D. Kirik, Micropor. Mesopor. Mat. 133, 124 (2010)CrossRefGoogle Scholar
  29. 29.
    X. Lu, Y. Yuan, Appl. Catal. A Gen. 365, 180 (2009)CrossRefGoogle Scholar
  30. 30.
    R. Shmidt, E.W. Hansen, M. Stocker, D. Akporiage, O.H. Ellestàd, J. Am. Chem. Soc. 117, 4049 (1995)CrossRefGoogle Scholar
  31. 31.
    X.Y. Hao, Y.Q. Zhang, J.W. Wang, W. Zhou, C. Zhang, S. Liu, Micropor. Mesopor. Mat. 885, 38 (2005)Google Scholar
  32. 32.
    G.A. Eimer, S.G. Casuscelli, G.E. Ghione, M.E. Grivello, E.R. Herrero, Appl. Catal. A Gen. 298, 232 (2006)CrossRefGoogle Scholar
  33. 33.
    G.A. Eimer, C.M. Chanquia, M.S. Sapag, E.R. Herrero, Micropor. Mesopor. Mat. 116, 670 (2008)CrossRefGoogle Scholar
  34. 34.
    H.T. Gomes, P. Selvam, S.E. Dapurkar, J.L. Figueiredo, J.L. Faria, Micropor. Mesopor. Mat. 86, 287 (2005)CrossRefGoogle Scholar
  35. 35.
    C.M. Chanquia, K. Sapag, E. Rodriguez-Casetellon, E.R. Herrero, G.A. Eimer, J. Phys. Chem. C 114, 1481 (2010)CrossRefGoogle Scholar
  36. 36.
    G. Centi, S. Perathoner, D. Billing, E.J. Giamello, J. Cat. 151, 75 (1995)CrossRefGoogle Scholar
  37. 37.
    M.C. Marion, E. Garboeski, M.J. Priment, Chem. Soc. Farad. Trans. 86, 3027 (1990)CrossRefGoogle Scholar
  38. 38.
    A.B.P. Lever, Inorganic Electron Spectroscopy, (Elsiever, 1984)Google Scholar
  39. 39.
    S.D. Robertson, B.D. Mcnicol, J.H. Debaos, S.C. Kloet, J.W. Jenkins, J. Catal. 37, 424 (1975)CrossRefGoogle Scholar
  40. 40.
    C.J.G. Van Der Grift, A. Mulder, J.W. Geus, Appl. Catal. 60, 181 (1990)CrossRefGoogle Scholar
  41. 41.
    A.J. Marchi, D.A. Gordo, A.F. Trasarti, C.R. Apesteguia, Appl. Catal. A Gen. 249, 53 (2003)CrossRefGoogle Scholar
  42. 42.
    S. Bennici, A. Gervasini, N. Ravasio, F. Zaccheria, J. Phys. Chem. B 107, 5168 (2003)CrossRefGoogle Scholar
  43. 43.
    J.P. Espinos, J. Morales, A. Barranco, A. Caballero, J.P. Holgado, A.R. Gonzalez-Elipe, J. Phys. Chem. B. 106, 6921 (2002)CrossRefGoogle Scholar
  44. 44.
    U.G. Singh, R.T. Williams, K.R. Hallam, G.C. Allen, J. Solid State Chem. 178, 3405 (2005)CrossRefGoogle Scholar
  45. 45.
    E. Moretti, M. Lenarda, L. Storaro, A. Talon, T. Montanari, G. Busca, E. Rodriguez-Castellon, A. Jimenez-Lopez, M. Turco, G. Bagnasco, R. Frattini, Appl. Catal. A Gen. 335, 46 (2008)CrossRefGoogle Scholar
  46. 46.
    A. Yin, X. Guo, W.L. Dai, K. Fan, J. Phys. Chem. C 113, 11003 (2009)CrossRefGoogle Scholar
  47. 47.
    D. Haffad, U. Kameswari, M.M. Bettahar, A. Chambellan, J.C. Lavalley, J. Catal. 172, 85 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire du Gaz naturel, Faculté de ChimieUniversité des Sciences et Technologie Houari Boumediene (USTHB)AlgerAlgeria
  2. 2.CNRS, Laboratoire de Réactivité des Surface, LRSSorbonne UniversitéParisFrance

Personalised recommendations