Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 7, pp 4365–4373 | Cite as

Green synthesis of ZnO, Ag/ZnO photocatalyst on Sn foil at room temperature and physicochemical characterization for removal of methyl orange from wastewater

  • Lili Li
  • Mingzhe Ma
  • Shuxia Guan
  • Hongjun Wu
Article
  • 116 Downloads

Abstract

On the Sn foil, the new photocatalyst pyramid-like ZnO was first synthesized via the one-pot direct-precipitation method at room temperature, wherein NaOH works as an O source and Zn(CH3COO)2 works as a Zn source, respectively. The influence of growth conditions, optical properties, and photocatalytic activity of ZnO was investigated. The pyramid-like ZnO has higher photodegradation of methyl orange (MO), and excellent reuseability. The ZnO sample used after 20 cycles decomposed 50% MO in 150 min. Ag/ZnO has higher photodegradation than ZnO. The photoactivity properties were studied with Ag metal absorbed on the surface of pyramid-like ZnO. Ag not only modified the surface of ZnO, but also improved the photoactivity properties of the ZnO owing to the charge transfer resistance characteristic between Ag and ZnO. The samples were investigated by scanning electron microscopy and X-ray.

Keywords

ZnO Methyl orange (MO) Photocatalyst 

References

  1. 1.
    H. Duan, Q. Huang, Q. Wang, B. Zhou, J. Li, J. Hazard. Mater. 2–3, 221 (2008)CrossRefGoogle Scholar
  2. 2.
    R. Navia, A. Bezama, J. Hazard. Mater. 1, 177 (2008)CrossRefGoogle Scholar
  3. 3.
    H. Liu, X. Dong, G. Li, X. Su, Z. Zhu, Appl. Surf. Sci. 271, 276 (2013)CrossRefGoogle Scholar
  4. 4.
    M. Xu, Q. Li, H. Fan, Adv. Powder Technol. 25, 1715 (2014)CrossRefGoogle Scholar
  5. 5.
    L.T. Budnik, S. Fahrenholtz, S. Kloth, X. Baur, J. Environ. Monit. 4, 936 (2010)CrossRefGoogle Scholar
  6. 6.
    L.W. Creelman, V. Pešinova, Y. Cohen, J. Hazard. Mater. 1, 15 (1994)CrossRefGoogle Scholar
  7. 7.
    K. Xu, D. Zeng, S. Tian, S. Zhang, C. Xie, Sens. Actuators B: Chem. 190, 585 (2014)CrossRefGoogle Scholar
  8. 8.
    E. Lombi, E. Donner, S. Taheri, E. Tavakkoli, Å.K. Jämting, Environ. Pollut. 176, 193 (2013)CrossRefGoogle Scholar
  9. 9.
    O. Lee, H.Y. Kim, W. Park, T.H. Kim, S. Yu, J. Hazard. Mater. 295, 201 (2015)CrossRefGoogle Scholar
  10. 10.
    T.H. Kim, Y.K. Nam, S.J. Lim, Radiat. Phys. Chem. 97, 332 (2014)CrossRefGoogle Scholar
  11. 11.
    M.A. Oturan, J.J. Aaron, Crit. Rev. Environ. Sci. Technol. 44, 2577 (2014)CrossRefGoogle Scholar
  12. 12.
    M. Hassaan, A.E. Nemr, Int. J. Photochem. Photobiol. 2, 85 (2017)Google Scholar
  13. 13.
    S.M. Wang, Y. Guan, L.P. Wang, W. Zhao et al., Appl. Catal. B 168–169, 448 (2015)CrossRefGoogle Scholar
  14. 14.
    K.F.M. Omar, N.A.A. Aziz, S.S.A. Amr, P. Palaniandy, Global NEST, (2017)Google Scholar
  15. 15.
    H.M. E-Naas, M.A. Alhaija, S.A. Zuhair, Environ. Sci. Pollut. Res. 24, 7511 (2017)CrossRefGoogle Scholar
  16. 16.
    L. Alvarado, I.R. Torres, A.C. Chen, Sep. Purif. Technol. 105, 55 (2013)CrossRefGoogle Scholar
  17. 17.
    A. Keränen, T. Leiviskä, Desalination Water Treat. 53, 2645 (2015)CrossRefGoogle Scholar
  18. 18.
    W.B. Sandí, T. Karanfil, Water Res. 124, 20 (2017)CrossRefGoogle Scholar
  19. 19.
    P.V. Kamat, Acc. Chem. Res. 50, 527 (2017)CrossRefGoogle Scholar
  20. 20.
    Y. Zhao, R.G. Li, L.C. Mu, C. Li, Cryst. Growth Des. 17, 2923 (2017)CrossRefGoogle Scholar
  21. 21.
    S.T. Tan, A.A. Umar, A. Balouch, Ultrason. Sonochem. 21, 754 (2014)CrossRefGoogle Scholar
  22. 22.
    X.G. Meng, L.Q. Liu, S.X. Yang, H. Xu, D.F. Wang et al., Adv. Mater. 28, 6781 (2016)CrossRefGoogle Scholar
  23. 23.
    X.W. Zou, H.Q. Fan, Y.M. Tian, S.J. Yan, CrystEngComm 16, 1149 (2014)CrossRefGoogle Scholar
  24. 24.
    Y.M. He, L.H. Zhang, M.H. Fan, X.X. Wang, Sol. Energy Mater. Sol. Cells 137, 175 (2015)CrossRefGoogle Scholar
  25. 25.
    T. Huang, X.P. Lin, J.C. Xing, W.D. Wang, Z.C. Shan, F.Q. Huang, Mater. Sci. Eng., B 141, 49 (2007)CrossRefGoogle Scholar
  26. 26.
    Y.X. Zhao, W.T. Wang, Y.P. Li, Y. Zhang, Z.F. Yan, Z.Y. Huo, Nanoscale 6, 195 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Lahiri, Matthias Batzill. J. Phys. Chem. C 112, 4304 (2008)CrossRefGoogle Scholar
  28. 28.
    Y.C. Yang, Y. Liu, J.H. Wei, C.X. Pan, R. Xiong, J. Shi, RSC Adv. 4, 31941 (2014)CrossRefGoogle Scholar
  29. 29.
    A. Belhadi, L. Boudjellal, S. Boumaza, M. Trari, Int. J. Hydr. Energy 43, 3418 (2018)CrossRefGoogle Scholar
  30. 30.
    D.P. Kumar, N.L. Reddy, M. Karthik, B. Neppolian, J. Madhavan, M.V. Shankar, Sol. Energy Mater. Sol. Cells 154, 78 (2016)CrossRefGoogle Scholar
  31. 31.
    A. Kumar, M. Naushad, A. Rana, G. Sharma, A.A. Ghfar, F.J. Stadler, M.R. Khan, Int. J. Biol. Macromol. 104, 1172 (2017)CrossRefGoogle Scholar
  32. 32.
    M. Waqas, A. ShahidIqbal, A. Bahadur, M. Saeed, M. Raheel, Appl. Catal. B 219, 30 (2017)CrossRefGoogle Scholar
  33. 33.
    S. Javaid, M.A. Farrukh, I. Muneer, Superlattices Microstruct. 82, 234 (2015)CrossRefGoogle Scholar
  34. 34.
    A. Ghosh, A. Mondal, Mater. Lett. 164, 221 (2016)CrossRefGoogle Scholar
  35. 35.
    X. Fang, Y.F. Yuan, D.P. Wu, M. Zhao, Z.Y. Gao, K. Jiang, Mater. Res. Bull. 48, 2066 (2013)CrossRefGoogle Scholar
  36. 36.
    S.T. Tan, A.A. Umar, A. Balouch, ACS Comb. Sci. 16, 314 (2014)CrossRefGoogle Scholar
  37. 37.
    L.M. Liu, W.Y. Yang, Q. Li, S.A. Gao, J.K. Shang, ACS Appl. Mater. Interfaces 6, 5629 (2014)CrossRefGoogle Scholar
  38. 38.
    M. D’Arienzo, F. Morazzoni, W. Jaegermann, N. Rockstroh, H. Junge, T. Toupance, J. Phys. Chem. C 119, 7006 (2015)CrossRefGoogle Scholar
  39. 39.
    G.A.S. Josephine, A. Sivasamy, Environ. Sci. Technol. Lett. 1, 172 (2014)CrossRefGoogle Scholar
  40. 40.
    W. Shen, Z. Li, H. Wang, Y. Liu, Q. Guo, Y. Zhang, J. Hazard. Mater. 152, 172 (2008)CrossRefGoogle Scholar
  41. 41.
    M. Zhou, J. Yu, B. Cheng, J. Hazard. Mater. B 137, 1838 (2006)CrossRefGoogle Scholar
  42. 42.
    C. Estrellan, C. Salim, H. Hinode, React. Kinet. Catal. Lett. 98, 187 (2009)CrossRefGoogle Scholar
  43. 43.
    P. Hoyer, H. Weller, J. Phys. Chem. 99, 14096 (1995)CrossRefGoogle Scholar
  44. 44.
    R.M. Mohamed, J. Alloy. Compd. 509, 6824 (2011)CrossRefGoogle Scholar
  45. 45.
    M. Height, S. Pratsinis, O. Mekasuwandumrong, P. Praserthdam, Appl. Catal. B: Environ. 63, 305 (2006)CrossRefGoogle Scholar
  46. 46.
    N.J. Ridha, A.A. Umar, F. Alosfur, J. Nanosci. Nanotechnol. 13, 2667 (2013)CrossRefGoogle Scholar
  47. 47.
    T. Han, C. Wu, C. Hsieh, J. Vac. Sci. Technol., B 25, 430 (2007)CrossRefGoogle Scholar
  48. 48.
    R. Ullah, J. Dutta, J. Hazard. Mater. 156, 194 (2008)CrossRefGoogle Scholar
  49. 49.
    W.W. Lu, S.Y. Gao, J.J. Wang, J. Phys. Chem. C 112, 16792 (2008)CrossRefGoogle Scholar
  50. 50.
    S. Abbasi, M. Hasanpour, J. Mater. Sci.: Mater. Electron. 28, 1307 (2017)Google Scholar
  51. 51.
    S. Abbasi, M. Hasanpour, J. Mater. Sci.: Mater. Electron. 28, 11846 (2017)Google Scholar
  52. 52.
    N. Roozban, S. Abbasi, M. Ghazizadeh, J. Mater. Sci.: Mater. Electron. 28, 7343 (2017)Google Scholar
  53. 53.
    N. Roozban, S. Abbasi, M. Ghazizadeh, J. Mater. Sci.: Mater. Electron. 28, 6047 (2017)Google Scholar
  54. 54.
    A. Ghaderi, S. Abbasi, F. Farahbod, Iran. J. Chem. Eng. 12, 96 (2015)Google Scholar
  55. 55.
    S. Abbasi, M.-S. Ekrami-Kakhki, M. Tahari, J. Mater. Sci.: Mater. Electron. 28, 15306 (2017)Google Scholar
  56. 56.
    L.F.D. Silva, O.F. Lopes, A.C. Catto, RSC Adv. 6, 2112 (2016)CrossRefGoogle Scholar
  57. 57.
    S. Nagaya, H. Nishikiori, ACS Appl. Mater. Interfaces 5, 8841 (2013)CrossRefGoogle Scholar
  58. 58.
    I. Iwantono, F. Anggelina, S.K.M. Saad, M.Y.A. Rahman, A. Ali Umar, Mater. Express 7, 312 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringNortheast Petroleum InstituteDaqingPeople’s Republic of China

Personalised recommendations