Skip to main content
Log in

Preparation and adsorption property of hollow MoS2 microspheres composed of nanoflakes

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The hollow molybdenum disulfide (MoS2) microspheres composed of nanoflakes were successfully synthesized via a facile hydrothermal method, in which molybdenum trioxide (MoO3) and potassium thiocyanate (KSCN) were used as Mo and S source, and hexadecyltrimethyl ammonium bromide (CTAB) was as a surfactant. The hollow MoS2 microspheres obtained at different hydrothermal temperatures significantly influence their purity, crystalline quality and thermal stability. X-ray diffraction, energy dispersive, thermal gravimetric analysis, Brunauer–Emmet–Teller, a UV–visible spectrophotometer (UV–Vis), field-emission scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy were used to characterize the samples. The weak hydrolysis of MoO3 in the solution and interaction with the surfactant CTAB plays an important role in the formation of the hollow structure of MoS2 microspheres. In addition, the final adsorption capacity of the MoS2 for the different concentrations of methylene blue (MB) solutions was studied in detail. The removal and the adsorption capacity of MoS2 sample for 200 mg L−1 of MB solution could reach 85.94% and 343.74 mg g−1 after 10 min, respectively. The result indicates that the hollow MoS2 possess a significant adsorption ability for dye in the solution, which might be anticipated to be used in wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang, Y. Gong, S. Kraemer, P.M. Ajayan, K. Banerjee, Nature 526, 91 (2015)

    Article  CAS  PubMed  Google Scholar 

  2. K.F. Mak, J. Shan, Nat. Photonics 10, 216 (2016)

    Article  CAS  Google Scholar 

  3. J. Feng, K. Liu, M. Graf, M. Lihter, R.D. Bulushev, D. Dumcenco, D.T.L. Alexander, D. Krasnozhon, T. Vuletic, A. Kis, A. Radenovic, Nano Lett. 15, 3431 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. Y.K. Hsu, Y.C. Chen, Y.G. Lin, Electrochim. Acta 139, 401 (2014)

    Article  CAS  Google Scholar 

  5. B. Pandit, S.S. Karade, B.R. Sankapal, A.C.S. Appl, Mater. Interfaces 9, 44880 (2017)

    Article  CAS  Google Scholar 

  6. S.S. Karade, P. Dwivedi, S. Majumder, B. Pandit, B.R. Sankapal, Sustain. Energy Fuels 1, 1366 (2017)

    Article  CAS  Google Scholar 

  7. S.S. Karade, D.P. Dubal, B.R. Sankapal, Rsc Adv. 6, 39159 (2016)

    Article  CAS  Google Scholar 

  8. S.S. Karade, D.P. Dubal, B.R. Sankapal, Chemistryselect 2, 10405 (2017)

    Article  CAS  Google Scholar 

  9. C. Song, Catal. Today 86, 211 (2003)

    Article  CAS  Google Scholar 

  10. R.S. Sundaram, M. Engel, A. Krupke, R. Lombardo, A.C. Ferrari, P. Avouris, M. Steiner, Nano Lett. 13, 1416 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. D. Voiry, H. Yamaguchi, J.W. Li, R. Silva, C.B. Diego, T. Alves, M.W. Fujita, T. Chen, V.B. Asefa, G. Shenoy, M.Chhowalla Eda, Nat. Mater. 12, 850 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. M. Bernardi, M. Palummo, J.C. Grossman, Nano Lett. 13, 3664 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. S.M. Wang, H. Ge, S.L. Sun, J.Z. Zhang, F.M. Liu, X.D. Wen, X.H. Yu, L.P. Wang, Y. Zhang, H.W. Xu, J.C. Neuefeind, Z.F. Qin, C.F. Chen, C.Q. Jin, Y.W. Li, D.W. He, Y.S. Zhao, J. Am. Chem. Soc. 137, 4815 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. S. Anghel, Y. Chumakov, V. Kravtsov, G. Volodina, A. Mitioglu, P. Plochocka, K. Sushkevich, K.E. Mishina, L. Kulyuk, J. Lumin. 177, 331 (2016)

    Article  CAS  Google Scholar 

  15. H. Tang, C.S. Li, H.J. Song, X.F. Yang, X.H. Yan, CrystEngComm 13, 5119 (2011)

    Article  CAS  Google Scholar 

  16. J. Luxa, J. Fawdon, Z. Sofer, V. Mazanek, M. Pumera, ChemPhysChem 17, 2890 (2016)

    Article  CAS  PubMed  Google Scholar 

  17. S.X. Cao, T.M. Liu, S. Hussain, W. Zeng, F.S. Pan, X.H. Peng, J. Mater. Sci.: Mater. Electron. 26, 809 (2014)

    Google Scholar 

  18. D. Duphil, S. Bastide, C. Lévy-Clément, J. Mater. Chem. 12, 2430 (2002)

    Article  CAS  Google Scholar 

  19. M. Chhowalla, G.A.J. Amaratunga, Nature 407, 164 (2000)

    Article  CAS  PubMed  Google Scholar 

  20. J.H. Bang, K.S. Suslick, Adv. Mater. 22, 1039 (2010)

    Article  CAS  PubMed  Google Scholar 

  21. X. Zhang, J. Liang, S. Ding. The Application of Nanostructure MoS 2 Materials in Energy Storage and Conversion. (Springer, Cham, 2014), p. 237

    Google Scholar 

  22. Q. Li, E.C. Walter, W.E. Van der Veer, J. Phys. Chem. B 109, 3169 (2005)

    Article  CAS  PubMed  Google Scholar 

  23. L.X. Chang, H.B. Yang, W.Y. Fu, J.Z. Zhang, Q.J. Yu, H.Y. Zhu, J.J. Chen, R.H. Wei, Y.M. Sui, X.F. Pang, G.T. Zou, Mater. Res. Bull. 43, 2427 (2008)

    Article  CAS  Google Scholar 

  24. J. Chen, S.L. Li, Q. Xu, K. Tanaka, Chem. Commun. (Camb.) 16, 1722 (2002)

    Article  CAS  Google Scholar 

  25. Z.B. Chen, D. Cummins, B.N. Reinecke, E. Clark, M.K. Sunkara, T.F. Jaramillo, Nano Lett. 11, 4168 (2011)

    Article  CAS  PubMed  Google Scholar 

  26. F. Cesano, D. Pellerej, D. Scarano, G. Ricchiardi, A. Zecchina, J. Photochem. Photobiol., A 242, 51 (2012)

    Article  CAS  Google Scholar 

  27. G. Jia, M. Yang, Y. Song, H. You, H. Zhang, Cryst. Growth Des. 9, 301 (2009)

    Article  CAS  Google Scholar 

  28. J.H. Li, D.G. Wang, H.J. Ma, Z.D. Pan, Y.X. Jiang, M. Li, Z.J. Tian, Mater. Lett. 160, 550 (2015)

    Article  CAS  Google Scholar 

  29. J. Abulhassani, J.L. Manzoori, M. Amjadi, J. Hazard. Mater. 176, 481 (2010)

    Article  CAS  PubMed  Google Scholar 

  30. M.M. Perera, M.W. Lin, H.J. Chuang, B.P. Chamlagain, C.Y. Wang, X.B. Tan, M.M.C. Cheng, D. Tomanek, Z.X. Zhou, ACS Nano 7, 4449 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. L. Ma, W.X. Chen, H. Li, Y.F. Zheng, Z.D. Xu, Mater. Lett. 62, 797 (2008)

    Article  CAS  Google Scholar 

  32. H. Luo, C. Xu, D.B. Zou, L. Wang, T.K. Ying, Mater. Lett. 62, 3558 (2008)

    Article  CAS  Google Scholar 

  33. M. Arshadi, F. SalimiVahid, J.W.L. Salvacion, M. Soleymanzadeh, RSC Adv. 4, 16005 (2014)

    Article  CAS  Google Scholar 

  34. H.S. Zheng, W.Q. Guo, S. Li, R.L. Yin, Q.L. Wu, X.C. Feng, N.Q. Ren, J.S. Chang, Catal. Commun. 88, 68 (2017)

    Article  CAS  Google Scholar 

  35. J. Mao, X.M. Chen, X.W. Du, J. Alloys Compd. 656, 972 (2016)

    Article  CAS  Google Scholar 

  36. X. Sun, Y. Li, Angew. Chem. Int. Ed. 43, 597 (2004)

    Article  CAS  Google Scholar 

  37. Z. Wang, T. Chen, W.X. Chen, K. Chang, L. Ma, G.C. Huang, D.Y. Chen, J.Y. Lee, J. Mater. Chem. A 1, 2202 (2013)

    Article  Google Scholar 

  38. F. Wang, J.H. Yang, X. Wu, X.B. Wang, C.X. Sun, S.F. Liu, C.Y. Guo, Biochimie 88, 121 (2006)

    Article  CAS  PubMed  Google Scholar 

  39. A. Mele, C.D. Tran, S.H. De Paoli Lacerda, Angew. Chem. Int. Ed. 42, 4364 (2003)

    Article  CAS  Google Scholar 

  40. T.S. Sian, G.B. Reddy, Chem. Phys. Lett. 418, 170 (2006)

    Article  CAS  Google Scholar 

  41. L. Yu, J.Q. Xie, F.Z. Li, Prog. React. Kinet. Mech. 39, 262 (2014)

    Article  CAS  Google Scholar 

  42. B.B. Sheng, J.S. Liu, Z.Q. Li, M.H. Wang, K.J. Zhu, J.H. Qiu, J. Wang, Mater. Lett. 144, 153 (2015)

    Article  CAS  Google Scholar 

  43. H. Li, F. Xie, W. Li, B.D. Fahlman, M.F. Chen, W.J. Li, RSC Adv. 6, 105222 (2016)

    Article  CAS  Google Scholar 

  44. G.G. Tang, J.R. Sun, C. Wei, K.Q. Wu, X.R. Ji, S.S. Liu, H. Tang, C.S. Li, Mater. Lett. 86, 9 (2012)

    Article  CAS  Google Scholar 

  45. N. Li, Y.M. Chai, Y.P. Li, Z. Tang, B. Dong, Y.Q. Liu, C.G. Liu, Mater. Lett. 66, 236 (2012)

    Article  CAS  Google Scholar 

  46. S. Anghel, Y. Chumakov, A. Colev, V. Kravtsov, L. Kulyuk, C. Mamaliga, A. Mitioglu, K. Sushkevich, G. Volodina. Excitonic Luminescence, X-ray Analysis and Local Band Structure of Chlorine Intercalated 2H- and 3R-MoS 2 Polytypes. (Springer, 2016), p. 192

  47. L.J. Ye, H.Y. Xu, D.K. Zhang, S.J. Chen, Mater. Res. Bull. 55, 221 (2014)

    Article  CAS  Google Scholar 

  48. A.T. Massey, R. Gusain, S. Kumari, O.P. Khatri, Ind. Eng. Chem. Res. 55, 7124 (2016)

    Article  CAS  Google Scholar 

  49. F. Maugé, J. Lamotte, N.S. Nesterenko, O. Manoilova, A.A. Tsyganenko, Catal. Today 70, 271 (2001)

    Article  Google Scholar 

  50. F. Rouquerol, J. Rouquerol, K. Sing. CHAPTER 12–Properties of Some Novel Adsorbents. (Elsevier, 1999), p. 401

Download references

Acknowledgements

This work was supported by the 321 talent Project of Nanjing (Grant No. 631783) and National Science Foundation of China (Grant No. 51371126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjiang Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 435 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, H., Zhou, S. et al. Preparation and adsorption property of hollow MoS2 microspheres composed of nanoflakes. Res Chem Intermed 44, 4353–4364 (2018). https://doi.org/10.1007/s11164-018-3391-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3391-3

Keywords

Navigation