Research on Chemical Intermediates

, Volume 44, Issue 7, pp 4339–4351 | Cite as

Magnetic catalysts based on electric arc furnace dust used to remove pollutants

  • Clara V. Diniz
  • Mariana E. da Fonseca
  • Ildefonso Binatti
  • José D. Ardisson
  • Eudes Lorençon
  • Raquel Vieira Mambrini


New materials based on electric arc furnace (EAF) dust have been produced via temperature-programmed reduction using hydrogen gas at different temperatures. Scanning electron microscopy, thermal analysis, X-ray diffraction, and Mössbauer spectroscopy suggested that the EAF dust is reduced by hydrogen at 600 and 700 °C producing reduced iron, e.g., iron (II) and iron metallic, magnetics and more active catalytic phases. The new materials show magnetic behavior as well as EAF starting material. Electron paramagnetic resonance studies using N-t-butyl-α-phenylnitrone as a trapped radical agent were performed showing characteristic signals related to paramagnetic species produced exclusively by the interaction of catalysts with hydrogen peroxide (H2O2). The new magnetic materials were successfully used for pollutant removal by adsorption followed by oxidation of model dyes such as methylene blue and indigo carmine. In addition, the great advantage of these materials is that they may be easily recovered magnetically and reused.


Electric arc furnace dust Oxidation Pollutant removal Magnetic materials 



This work was developed with the support of Rede Mineira de Química, FAPEMIG, and CNPq.

Compliance with ethical standards

Conflict of interest

The authors declared that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.


  1. 1.
    P.T. Teo, A.S. Anasyida, P. Basu, M.S. Nurulakmal, Waste Manage. 34, 2697 (2014)CrossRefGoogle Scholar
  2. 2.
    V.Z. Serjun, A. Mladenovic, B. Mirtic, A. Meden, J. Scancar, R. Milacic, Waste Manage. 43, 376 (2015)CrossRefGoogle Scholar
  3. 3.
    V.E. Uz, I. Gokalp, Mater. Struct. 50, 14 (2017)CrossRefGoogle Scholar
  4. 4.
    R. Mecozzi, L. Di Palma, D. Pilone, L. Cerboni, J. Hazard. Mater. 137, 886 (2006)CrossRefGoogle Scholar
  5. 5.
    Priyanka, V.C. Srivastava, Ind. Eng. Chem. Res. 52, 17790 (2013)CrossRefGoogle Scholar
  6. 6.
    T.H. Liu, Y.H. Li, Q.J. Du, J.K. Sun, Y.Q. Jiao, G.M. Yang, Z.H. Wang, Y.Z. Xia, W. Zhang, K.L. Wang, H.W. Zhu, D.H. Wu, Colloids Surf. B 90, 197 (2012)CrossRefGoogle Scholar
  7. 7.
    A.M. Mesquita, I.R. Guimaraes, G.M.M. de Castro, M.A. Goncalves, T.C. Ramalho, M.C. Guerreiro, Appl. Catal. B 192, 286 (2016)CrossRefGoogle Scholar
  8. 8.
    A.R. Martins, A.B. Salviano, A.A.S. Oliveira, R.V. Mambrini, F.C.C. Moura, Environ. Sci. Pollut. Res. 24, 5991 (2017)CrossRefGoogle Scholar
  9. 9.
    Y.W. Pan, M.H. Zhou, X. Li, L.T. Xu, Z.X. Tang, M.M. Liu, Sep. Purif. Technol. 169, 83 (2016)CrossRefGoogle Scholar
  10. 10.
    L. Zhou, L.R. Enakonda, M. Harb, Y. Saih, A. Aguilar-Tapia, S. Ould-Chikh, J.-I. Hazemann, J. Li, N. Wei, D. Gary, P. Del-Gallo, J.-M. Basset, Appl. Catal. B 208, 44 (2017)CrossRefGoogle Scholar
  11. 11.
    I.T. Cunha, I.F. Teixeira, A.S. Albuquerque, J.D. Ardisson, W.A.A. Macedo, H.S. Oliveira, J.C. Tristão, K. Sapag, R.M. Lago, Catal. Today 259, 222 (2016)CrossRefGoogle Scholar
  12. 12.
    D. Hirabayashi, Y. Sakai, T. Yoshikawa, K. Mochizuki, Y. Kojima, K. Suzuki, K. Ohshita, Y. Watanabe, Hyperfine Interact. 167, 809 (2006)CrossRefGoogle Scholar
  13. 13.
    X. Zhang, D. Han, Z. Hua, S. Yang, J. Alloys Compd. 684, 120 (2016)CrossRefGoogle Scholar
  14. 14.
    M.P. Morales, S. Veintemillas-Verdaguer, M.I. Montero, C.J. Serna, A. Roig, L. Casas, B. Martinez, F. Sandiumenge, Chem. Mater. 11, 3058 (1999)CrossRefGoogle Scholar
  15. 15.
    P.P. Soares, G.S. Barcellos, C.L. Petzhold, V. Lavayen, J. Phys. Chem. Solids 99, 111 (2016)CrossRefGoogle Scholar
  16. 16.
    U. Schwertmann, E. Murad, Clays Clay Miner. 31, 277 (1983)CrossRefGoogle Scholar
  17. 17.
    A.P. Heitmann, P.S.O. Patrício, I.R. Coura, E.F. Pedroso, P.P. Souza, H.S. Mansur, A. Mansur, L.C.A. Oliveira, Appl. Catal. B 189, 141 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Clara V. Diniz
    • 1
  • Mariana E. da Fonseca
    • 1
  • Ildefonso Binatti
    • 1
  • José D. Ardisson
    • 2
  • Eudes Lorençon
    • 1
  • Raquel Vieira Mambrini
    • 1
  1. 1.Centro Federal de Educação Tecnológica de Minas GeraisBelo HorizonteBrazil
  2. 2.Laboratório de Física AplicadaCentro de Desenvolvimento da Tecnologia Nuclear – CDTNBelo HorizonteBrazil

Personalised recommendations