Research on Chemical Intermediates

, Volume 44, Issue 6, pp 3849–3865 | Cite as

Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation

  • Rock Keey Liew
  • Min Yee Chong
  • Osarieme Uyi Osazuwa
  • Wai Lun Nam
  • Xue Yee Phang
  • Man Huan Su
  • Chin Kui Cheng
  • Cheng Tung Chong
  • Su Shiung Lam


Palm kernel shell (PKS), representing an abundantly available oil palm waste in Malaysia, was transformed into activated carbon by microwave vacuum pyrolysis. PKS was first carbonized to produce biochar, followed by an activation process with chemical or water to produce chemically and physically activated carbon, respectively. The activated carbon materials were characterized for their porous characteristics and elemental and proximate composition to examine their suitability as catalyst support. Catalysts were synthesized by supporting nickel on the activated carbon materials and tested for their performance in the methane dry reforming reaction. Microwave vacuum pyrolysis of PKS-derived char resulted in up to 89 wt% yield of activated carbon. The activated carbon was detected to have high Brunauer–Emmett–Teller (BET) surface area associated with a highly porous surface, characteristics of high adsorption capacity corresponding to many sites for adsorption of metal atoms with great potential for use as catalyst support material. Nickel atoms were detected on the surface of the activated carbon catalyst support, indicating successful synthesis of nickel-supported catalyst. The catalysts showed high methane conversion (up to 43 %), producing approximately 22 % gaseous products (CO + H2). These results show that activated carbon produced from microwave pyrolysis of palm kernel shell is a promising catalyst support material. Chemically activated carbon performed better as catalyst support compared with physically activated carbon in terms of CH4 and CO2 conversions.

Graphical Abstract


Palm Activated carbon Pyrolysis Microwave Catalyst support 



The authors gratefully acknowledge financial support from the Universiti Malaysia Terengganu to conduct this research. The authors also thank all the laboratory assistants in Universiti Malaysia Terengganu involved throughout this research for technical support.


  1. 1.
    P. Atkins, T. Overton, J. Rourke, M. Weller, Inorganic Chemistry (Oxford University Press, New York, 2006)Google Scholar
  2. 2.
    O. Deutschmann, H. Knözinger, K. Kochloefl, T. Turek, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, Weinheim, 2009)Google Scholar
  3. 3.
    H.A. Choudhury, V.S. Moholkar, Int. J. Innov. Res. Sci. Eng. Technol. 2, 8 (2013)CrossRefGoogle Scholar
  4. 4.
    N.M. Julkapli, S. Bagheri, Int. J. Hydrogen Energy 40, 2 (2015)CrossRefGoogle Scholar
  5. 5.
    S.S. Lam, R.K. Liew, Y.M. Wong, E. Azwar, A. Jusoh, R. Wahi, Waste Biomass Valoriz. 8, 2109 (2017)CrossRefGoogle Scholar
  6. 6.
    N.T. Phan, D.H. Brown, P. Styring, Tetrahedron Lett. 45, 42 (2004)CrossRefGoogle Scholar
  7. 7.
    E. Antolini, Renew. Sustain. Energy Rev. 58, 34 (2016)CrossRefGoogle Scholar
  8. 8.
    T. Dong, D. Gao, C. Miao, X. Yu, C. Degan, M. Garcia-Pérez, B. Rasco, S.S. Sablani, S. Chen, Energy Convers. Manag. 105, 1389 (2015)CrossRefGoogle Scholar
  9. 9.
    J.R. Kastner, S. Mani, A. Juneja, Fuel Process. Technol. 130, 31 (2015)CrossRefGoogle Scholar
  10. 10.
    S.S. Lam, R.K. Liew, C.K. Cheng, H.A. Chase, Appl. Catal. B Environ. 176, 601 (2015)CrossRefGoogle Scholar
  11. 11.
    B. Wu, Y. Kuang, X. Zhang, J. Chen, Nano Today 6, 1 (2011)CrossRefGoogle Scholar
  12. 12.
    X. Ji, K.T. Lee, R. Holden, L. Zhang, J. Zhang, G.A. Botton, M. Couillard, L.F. Nazar, Nat. Chem. 2, 4 (2010)CrossRefGoogle Scholar
  13. 13.
    B. Meryemoglu, S. Irmak, A. Hasanoglu, Fuel Process. Technol. 151, 59 (2016)CrossRefGoogle Scholar
  14. 14.
    M. Dhelipan, A. Arunchander, A. Sahu, D. Kalpana, J. Saudi Chem. Soc. 21, 4 (2017)CrossRefGoogle Scholar
  15. 15.
    S.S. Lam, R.K. Liew, Y.M. Wong, N.Y.P. Yek, N.L. Ma, C.L. Lee H.A. Chase, J. Clean. Prod. 162, 1376 (2017)CrossRefGoogle Scholar
  16. 16.
    E. Lam, J.H. Luong, ACS Catal. 4, 10 (2014)CrossRefGoogle Scholar
  17. 17.
    N.S. Nasri, M. Jibril, M.A.A. Zaini, R. Mohsin, H.U. Dadum, A.M. Musa, Jurnal Teknologi 67, 4 (2014)CrossRefGoogle Scholar
  18. 18.
    S.S. Lam, R.K. Liew, A. Jusoh, C.T. Chong, F.N. Ani, H.A. Chase, Renew. Sustain. Energy Rev. 53, 741 (2016)CrossRefGoogle Scholar
  19. 19.
    S.S. Lam, R.K. Liew, X.Y. Lim, F.N. Ani, A. Jusoh, Int. Biodeterior. Biodegad. 113, 325 (2016)CrossRefGoogle Scholar
  20. 20.
    G. Li, W. Zhu, L. Zhu, X. Chai, Korean J. Chem. Eng. 33, 2215 (2016)CrossRefGoogle Scholar
  21. 21.
    S.H. Park, H.J. Cho, C. Ryu, Y.-K. Park, J. Ind. Eng. Chem. 36, 314 (2016)CrossRefGoogle Scholar
  22. 22.
    J.S. Cha, S.H. Park, S.-C. Jung, C. Ryu, J.-K. Jeon, M.-C. Shin, Y.-K. Park, J. Ind. Eng. Chem. 40, 1 (2016)CrossRefGoogle Scholar
  23. 23.
    A.R. Mohamed, M. Mohammadi, G.N. Darzi, Renew. Sustain. Energy Rev. 14, 6 (2010)CrossRefGoogle Scholar
  24. 24.
    Y.-J. Zhang, Z.-J. Xing, Z.-K. Duan, M. Li, Y. Wang, Appl. Surf. Sci. 315, 279 (2014)CrossRefGoogle Scholar
  25. 25.
    D.-W. Cho, S.-H. Cho, H. Song, E.E. Kwon, Bioresour. Technol. 189, 1 (2015)CrossRefGoogle Scholar
  26. 26.
    X.-F. Tan, S.-B. Liu, Y.-G. Liu, Y.-L. Gu, G.-M. Zeng, X.-J. Hu, X. Wang, S.-H. Liu, L.-H. Jiang, Bioresour. Technol. 227, 359 (2017)CrossRefGoogle Scholar
  27. 27.
    N.A. Rashidi, S. Yusup, Chem. Eng. J. 314, 277 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Shamsuddin, N. Yusoff, M. Sulaiman, Procedia Chem. 19, 558 (2016)CrossRefGoogle Scholar
  29. 29.
    S.S. Lam, R.K. Liew, C.K. Cheng, N. Rasit, C.K. Ooi, N.L. Ma, J.-H. Ng, W.H. Lam, C.T. Chong, H.A. Chase, J. Environ. Manag. 213, 400 (2018)CrossRefGoogle Scholar
  30. 30.
    M. Carrier, A. Loppinet-Serani, D. Denux, J.-M. Lasnier, F. Ham-Pichavant, F. Cansell, C. Aymonier, Biomass Bioenergy 35, 1 (2011)CrossRefGoogle Scholar
  31. 31.
    R.K. Liew, W.L. Nam, M.Y. Chong, X.Y. Phang, M.H. Su, P.N.Y. Yek, N.L. Ma, C.K. Cheng, C.T. Chong, S.S. Lam, Process Saf. Environ. Prot. (2017). Google Scholar
  32. 32.
    W.L. Nam, X.Y. Phang, M.H. Su, R.K. Liew, N.L. Ma, M.H.N. Rosli, S.S. Lam, Sci. Total Environ. 624, 9 (2018)CrossRefGoogle Scholar
  33. 33.
    G. Sethia, A. Sayari, Carbon 99, 289 (2016)CrossRefGoogle Scholar
  34. 34.
    B.V. Ayodele, M.R. Khan, S.S. Lam, C.K. Cheng, Int. J. Hydrogen Energy 41, 8 (2016)Google Scholar
  35. 35.
    O.U. Osazuwa, C.K. Cheng, J. Clean. Prod. 148, 202 (2017)CrossRefGoogle Scholar
  36. 36.
    T. Srimachai, V. Thonglimp, O. Sompong, Energy Procedia 52, 352 (2014)CrossRefGoogle Scholar
  37. 37.
    S. Ang, E. Shaza, Y. Adibah, A. Suraini, M. Madihah, Process Biochem. 48, 9 (2013)CrossRefGoogle Scholar
  38. 38.
    M.M. Ishola, M.J. Taherzadeh, Bioresour. Technol. 165, 9 (2014)CrossRefGoogle Scholar
  39. 39.
    M. Saidu, A. Yuzir, M.R. Salim, S. Azman, N. Abdullah, Int. Biodeterior. Biodegrad. 95, 189 (2014)CrossRefGoogle Scholar
  40. 40.
    G. Neutelings, Plant Sci. 181, 4 (2011)CrossRefGoogle Scholar
  41. 41.
    J. Cao, G. Xiao, X. Xu, D. Shen, B. Jin, Fuel Process. Technol. 106, 41 (2013)CrossRefGoogle Scholar
  42. 42.
    F.-X. Collard, J. Blin, Renew. Sustain. Energy Rev. 38, 594 (2014)CrossRefGoogle Scholar
  43. 43.
    S.S. Lam, W.A.W. Mahari, C.K. Cheng, R. Omar, C.T. Chong, H.A. Chase, Energy 115, 791 (2016)CrossRefGoogle Scholar
  44. 44.
    S.S. Lam, W.A.W. Mahari, A. Jusoh, C.T. Chong, C.L. Lee, H.A. Chase, J. Clean. Prod. 147, 263 (2017)CrossRefGoogle Scholar
  45. 45.
    W.A. Wan Mahari, N.F. Zainuddin, W.M.N. Wan Nik, C.T. Chong, S.S. Lam, Energies 9, 780 (2016)CrossRefGoogle Scholar
  46. 46.
    W.A. Wan Mahari, N.F. Zainuddin, C.T. Chong, C.L. Lee, W.H. Lam, S.C. Poh, S.S. Lam, J. Environ. Chem. Eng. 5, 5836 (2017)CrossRefGoogle Scholar
  47. 47.
    Y. Shen, P. Zhao, Q. Shao, D. Ma, F. Takahashi, K. Yoshikawa, Appl. Catal. B Environ. 152–153, 140 (2014)CrossRefGoogle Scholar
  48. 48.
    M. Musa, M. Sanagi, H. Nur, W. Ibrahim, Sains Malays. 44, 4 (2015)CrossRefGoogle Scholar
  49. 49.
    K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 4 (1985)CrossRefGoogle Scholar
  50. 50.
    M.N. Mahamad, M.A.A. Zaini, Z.A. Zakaria, Int. Biodeterior. Biodegrad. 102, 274 (2015)CrossRefGoogle Scholar
  51. 51.
    C. Fukuhara, R. Hyodo, K. Yamamoto, K. Masuda, R. Watanabe, Appl. Catal. A Gen. 468, 18 (2013)CrossRefGoogle Scholar
  52. 52.
    I. Bodrov, L. Apel’baum, Kinet. Catal. 8, 379 (1967)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Rock Keey Liew
    • 1
  • Min Yee Chong
    • 1
  • Osarieme Uyi Osazuwa
    • 2
  • Wai Lun Nam
    • 1
  • Xue Yee Phang
    • 1
  • Man Huan Su
    • 1
  • Chin Kui Cheng
    • 2
  • Cheng Tung Chong
    • 3
  • Su Shiung Lam
    • 1
  1. 1.Pyrolysis Technology Research Group, Eastern Corridor Renewable Energy Group (ECRE), School of Ocean EngineeringUniversiti Malaysia TerengganuKuala NerusMalaysia
  2. 2.Faculty of Chemical and Natural Resources EngineeringUniversiti Malaysia PahangGambang, KuantanMalaysia
  3. 3.Faculty of Mechanical EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations