Control of selectivity in methane conversion reactions in RF plasma: the influence of reaction conditions



RF plasma excitation of methane has been studied in an effort to optimize the reaction conditions for a selective partial oxidation of methane. The reaction products of RF-excited methane are C2 hydrocarbons such as ethane and acetylene when O2 is not used. The introduction of a few percent of O2, however, is found to switch the selectivity in favor of CO while CO2 formation is suppressed down to a level below a few percent. Interestingly, in the low O2 ratio regime (0–0.6), the selectivity between CO and C2 hydrocarbons is observed to vary systematically in response to the detailed reaction conditions, including flow rate, pressure and applied RF power, which are explained by the competition between coupling and partial oxidation reactions. Variation in the density and the residence time of the active species in the plasma is suggested to determine the overall reaction pathways. The present results suggest a possibility of a selective production of the partial oxidation products of methane such as CO with a high selectivity and a high conversion efficiency using controlled RF plasma from methane and O2.


RF plasma Plasma excitation Methane Partial oxidation Carbon monoxide Acetylene 



This work was supported by C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015M3D3A1A01064899) and by the Ajou university research fund. This work was also supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, industry and Energy (No. 20154010200820).


  1. 1.
    E.F. Sousa-Aguiar, L.G. Appel, C. Mota, Catal. Today 101, 1 (2005)CrossRefGoogle Scholar
  2. 2.
    X. Zhen, Y. Wang, Renew. Sustain. Energy Rev. 52, 477 (2015)CrossRefGoogle Scholar
  3. 3.
    J.H. Lunsford, Catal. Today 63, 2 (2000)CrossRefGoogle Scholar
  4. 4.
    G.A. Foulds, B.F. Gray, Fuel Process. Technol. 42, 2 (1995)CrossRefGoogle Scholar
  5. 5.
    G.A. Olah, A. Goeppert, M. Czaun, G.K.S. Prakash, J. Am. Chem. Soc. 135, 2 (2013)CrossRefGoogle Scholar
  6. 6.
    G.A. Olah, A. Goeppert, M. Czaun, T. Mathew, R.B. May, G.K.S. Prakash, J. Am. Chem. Soc. 137, 27 (2015)CrossRefGoogle Scholar
  7. 7.
    T. Nozaki, A. Hattori, K. Okazaki, Catal. Today 98, 4 (2004)CrossRefGoogle Scholar
  8. 8.
    T. Nozaki, K. Okazaki, J. Jpn. Pet. Inst. 54, 3 (2011)CrossRefGoogle Scholar
  9. 9.
    A.M. Montoro-Damas, J.J. Brey, M.A. Rodríguez, A.R. González-Elipe, J. Cotrino, J. Power Sources 296, 268 (2015)CrossRefGoogle Scholar
  10. 10.
    K. Konno, K. Onoe, Y. Takiguchi, T. Yamaguchi, Chem. Eng. Res. Des. 95, 144 (2015)CrossRefGoogle Scholar
  11. 11.
    S.A. Iwarere, V.-J. Rohani, D. Ramjugernath, L. Fulcheri, Int. J. Hydrogen Energy 40, 8 (2015)CrossRefGoogle Scholar
  12. 12.
    L.M. Zhou, B. Xue, U. Kogelschatz, B. Eliasson, Plasma Chem. Plasma Process. 18, 3 (1998)CrossRefGoogle Scholar
  13. 13.
    X.-G. Zheng, S.-Y. Tan, L.-C. Dong, S.-B. Li, H.-M. Chen, S.-A. Wei, Fuel Process. Technol. 137, 250 (2015)CrossRefGoogle Scholar
  14. 14.
    X. Zheng, S. Tan, L. Dong, S. Li, H. Chen, J. Power Sources 274, 286 (2015)CrossRefGoogle Scholar
  15. 15.
    P.H. Thien, S. Gil, P. Da Costa, A. Giroir-Fendler, A. Khacef, Catal. Today 257, 86 (2015)CrossRefGoogle Scholar
  16. 16.
    P. Kasinathan, S. Park, W.C. Choi, Y.K. Hwang, J.-S. Chang, Y.-K. Park, Plasma Chem. Plasma Process. 34, 6 (2014)CrossRefGoogle Scholar
  17. 17.
    W.F.L.M. Hoeben, W. Boekhoven, F.J.C.M. Beckers, E.J.M. van Heesch, A.J.M. Pemen, J. Phys. D Appl. Phys. 47, 35 (2014)CrossRefGoogle Scholar
  18. 18.
    Z.A. Allah, J.C. Whitehead, Catal. Today 256, 76 (2015)CrossRefGoogle Scholar
  19. 19.
    B. Spasova, D. Tiemann, M. O’Connell, A. Ziogas, G. Kolb, V. Hessel, Int. J. Hydrogen Energy 39, 24 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Jo, D.H. Lee, W.S. Kang, Y.-H. Song, Phys. Plasmas 20, 8 (2013)Google Scholar
  21. 21.
    C. De Bie, J. van Dijk, A. Bogaerts, J. Phys. Chem. C 119, 39 (2015)CrossRefGoogle Scholar
  22. 22.
    S. Kudryashov, A. Ryabov, G. Shchyogoleva, J. Phys. D Appl. Phys. 49, 2 (2016)CrossRefGoogle Scholar
  23. 23.
    I. Rahim, S. Nomura, S. Mukasa, H. Toyota, Appl. Therm. Eng. 90, 120 (2015)CrossRefGoogle Scholar
  24. 24.
    T. Ihara, T. Ouro, T. Ochiai, M. Kiboku, Y. Iriyama, Bull. Chem. Soc. Jpn 69, 1 (1996)CrossRefGoogle Scholar
  25. 25.
    C.-H. Tsai, T.-H. Hsieh, Ind. Eng. Chem. Res. 43, 15 (2004)Google Scholar
  26. 26.
    W. Cho, Y. Baek, S.-K. Moon, Y.C. Kim, Catal. Today 74, 3 (2002)CrossRefGoogle Scholar
  27. 27.
    L.-T. Hsieh, W.-J. Lee, C.-Y. Chen, M.-B. Chang, H.-C. Chang, Plasma Chem. Plasma Process. 18, 2 (1998)CrossRefGoogle Scholar
  28. 28.
    T. Nozaki, V. Goujard, S. Yuzawa, S. Moriyama, A. Ağıral, K. Okazaki, J. Phys. D Appl. Phys. 44, 27 (2011)Google Scholar
  29. 29.
    T. Nozaki, K. Okazaki, in Green Processing and Synthesis (2012), p. 517Google Scholar
  30. 30.
    S. Kado, Y. Sekine, T. Nozaki, K. Okazaki, Catal. Today 89, 1 (2004)CrossRefGoogle Scholar
  31. 31.
    C. Busch, I. Möller, H. Soltwisch, Plasma Sources Sci. Technol. 10, 2 (2001)CrossRefGoogle Scholar
  32. 32.
    A. Indarto, Plasma Sources Sci. Technol. 25, 2 (2016)CrossRefGoogle Scholar
  33. 33.
    S. Mahammadunnisa, P. Manoj Kumar Reddy, C. Subrahmanyam, RSC Adv. 4, 8 (2014)CrossRefGoogle Scholar
  34. 34.
    S. Mahammadunnisa, K. Krushnamurty, C. Subrahmanyam, Catal. Today 256, 102 (2015)CrossRefGoogle Scholar
  35. 35.
    Y. Ju, W. Sun, Prog. Energy Combust. Sci. 48, 21 (2015)CrossRefGoogle Scholar
  36. 36.
    S.A. Nair, T. Nozaki, K. Okazaki, Ind. Eng. Chem. Res. 46, 11 (2007)CrossRefGoogle Scholar
  37. 37.
    J. Röpcke, G. Lombardi, A. Rousseau, P.B. Davies, Plasma Sources Sci. Technol. 15, 4 (2006)CrossRefGoogle Scholar
  38. 38.
    A. Indarto, N. Coowanitwong, J.-W. Choi, H. Lee, H.K. Song, Fuel Process. Technol. 89, 2 (2008)CrossRefGoogle Scholar
  39. 39.
    D.H. Lee, Y.-H. Song, K.-T. Kim, J.-O. Lee, Plasma Chem. Plasma Process. 33, 4 (2013)Google Scholar
  40. 40.
    D.H. Lee, K.-T. Kim, Y.-H. Song, W.S. Kang, S. Jo, Plasma Chem. Plasma Process. 33, 1 (2012)Google Scholar
  41. 41.
    Y. Yang, Plasma Chem. Plasma Process. 23, 2 (2003)Google Scholar
  42. 42.
    M. Heintze, M. Magureanu, J. Appl. Phys. 92, 5 (2002)Google Scholar
  43. 43.
    T. Suzuki, E. Hirota, J. Chem. Phys. 98, 3 (1993)CrossRefGoogle Scholar
  44. 44.
    S. Jo, D.H. Lee, Y.-H. Song, Int. J. Hydrogen Energy 38, 31 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Byungwook Jeon
    • 1
  • Eun Duck Park
    • 1
    • 3
  • Yu Kwon Kim
    • 1
    • 2
  1. 1.Division of Energy Systems ResearchAjou UniversitySuwonRepublic of Korea
  2. 2.Department of ChemistryAjou UniversitySuwonRepublic of Korea
  3. 3.Department of Chemical EngineeringAjou UniversitySuwonRepublic of Korea

Personalised recommendations