Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 6, pp 3723–3735 | Cite as

Metallic nickel supported on mesoporous silica as catalyst for hydrodeoxygenation: effect of pore size and structure

  • Min Su Jang
  • Tuan Ngoc Phan
  • Im Sik Chung
  • In-Gu Lee
  • Young-Kwon Park
  • Chang Hyun Ko
Article

Abstract

Catalytic hydrodeoxygenation (HDO) of anisole, a methoxy-rich lignin-derived bio-oil model compound, was carried out over a series of Ni-containing (5, 10, 20, and 30 wt%) catalysts with commercial silica and ordered mesoporous silica SBA-15 as support. Both supports and catalysts were characterized by N2 adsorption–desorption isotherms, X-ray diffraction, CO chemisorption, and transmission electron microscopy (TEM). Catalytic reaction was performed at 250 °C and 10 bar H2 pressure. Depending on the catalyst support used and the content of active metal, the catalytic activity and product distribution changed drastically. Increase of the nickel loading resulted in increased anisole conversion and C6 hydrocarbon (benzene and cyclohexane) yield. However, loading more Ni than 20 wt% resulted in a decrease of both conversion and C6 yield due to agglomeration of Ni particles. In addition, Ni/SBA-15 samples exhibited much stronger catalytic activity and selectivity toward C6 hydrocarbon products compared with Ni/silica catalysts. The differences in catalytic activity among these catalysts can be attributed to the effect of the pore size and pore structure of mesoporous SBA-15. SBA-15 can accommodate more Ni species inside channels than conventional silica due to its high pore volume with uniform pore structure, leading to high HDO catalytic activity.

Keywords

Hydrodeoxygenation Supported Ni catalysts Mesoporous silica SBA-15 Anisole 

Notes

Acknowledgements

This work was conducted under the framework of the Research and Development Program of the Korea Institute of Energy Research (KIER) (B8-2426-1). This work was also supported by the National Research Council of Science & Technology (NST) grant by the Korea government (MSIP) No. CAP-16-05-KIMM.

References

  1. 1.
    K. Tekin, S. Karagöz, S. Bektas, Renew. Sustain. Energy Rev. 40, 673 (2014)CrossRefGoogle Scholar
  2. 2.
    N. Arun, R.V. Sharma, A.K. Dalai, Renew. Sustain. Energy Rev. 48, 240 (2015)CrossRefGoogle Scholar
  3. 3.
    Y.H. Oh, I.Y. Eom, J.C. Joo, J.H. Yu, B.K. Song, S.H. Lee, S.H. Hong, S.J. Park, Korean J. Chem. Eng. 32(10), 1945 (2015)CrossRefGoogle Scholar
  4. 4.
    A.J.R. Hensley, Y. Hong, R. Zhang, H. Zhang, J. Sun, Y. Wang, J.S. McEwen, ACS Catal. 4, 3381 (2014)CrossRefGoogle Scholar
  5. 5.
    S. Jin, Z. Xiao, C. Li, X. Chen, L. Wang, J. Xing, W. Li, C. Liang, Catal. Today 234, 125 (2014)CrossRefGoogle Scholar
  6. 6.
    Q. Bu, H. Lei, A.H. Zacher, L. Wang, S. Ren, J. Liang, Y. Wei, Y. Liu, J. Tang, Q. Zhang, R. Ruan, Bioresour. Technol. 124, 470 (2012)CrossRefGoogle Scholar
  7. 7.
    C.H. Ko, S.H. Park, J.K. Jeon, D.J. Suh, K.E. Jeong, Y.K. Park, Korean J. Chem. Eng. 29(12), 1657 (2012)CrossRefGoogle Scholar
  8. 8.
    H. Lee, Y.M. Kim, I.G. Lee, J.K. Jeon, S.C. Jung, J.D. Chung, W.G. Choi, Y.K. Park, Korean J. Chem. Eng. 12, 3298 (2016)Google Scholar
  9. 9.
    T.M. Sankaranarayanan, A. Berenguer, C.O. Hernández, I. Moreno, P. Jana, J.M. Corondo, D.P. Serrano, P. Pizarro, Catal. Today 243, 163 (2015)CrossRefGoogle Scholar
  10. 10.
    Y. Yang, C.O. Hernández, V.A.P. O’Shea, P. Pizarro, D.P. Serrano, Appl. Catal. B Environ. 145, 91 (2014)CrossRefGoogle Scholar
  11. 11.
    V.N. Bui, G. Toussaint, D. Laurenti, C. Mirodatos, C. Geantet, Catal. Today 143, 172 (2009)CrossRefGoogle Scholar
  12. 12.
    A. Popov, E. Kondratieva, L. Mariey, J.M. Goupil, J. El Fallah, J.P. Gilson, A. Travert, F. Maugé, J. Catal. 297, 176 (2013)CrossRefGoogle Scholar
  13. 13.
    V.N. Bui, D. Laurenti, P. Afanasiev, C. Geantet, Appl. Catal. B Environ. 101, 239 (2011)CrossRefGoogle Scholar
  14. 14.
    V.N. Bui, D. Laurenti, P. Dlichère, C. Geantet, Appl. Catal. B Environ. 101, 246 (2011)CrossRefGoogle Scholar
  15. 15.
    M. Ferrari, S. Bosmans, R. Maggi, B. Delmon, P. Grange, Catal. Today 65, 257 (2001)CrossRefGoogle Scholar
  16. 16.
    R.N. Olcese, M. Bettahar, D. Petitjean, B. Malaman, F. Giovanella, A. Dufour, Appl. Catal. B Environ. 115–116, 63 (2012)CrossRefGoogle Scholar
  17. 17.
    J.G. Dickinson, P.E. Savage, ACS Catal. 4, 2605 (2014)CrossRefGoogle Scholar
  18. 18.
    X. Zhu, L.L. Lobban, R.G. Mallinson, D.E. Resasco, J. Catal. 281, 21 (2011)CrossRefGoogle Scholar
  19. 19.
    C.R. Lee, J.S. Yoon, Y.W. Suh, J.W. Choi, J.M. Ha, D.J. Suh, Y.K. Park, Catal. Commun. 17, 54 (2012)CrossRefGoogle Scholar
  20. 20.
    J. He, C. Zhao, J.A. Lercher, J. Catal. 309, 362 (2014)CrossRefGoogle Scholar
  21. 21.
    J. Lu, A. Heyden, J. Catal. 321, 39 (2015)CrossRefGoogle Scholar
  22. 22.
    R.H. Bowker, M.C. Smith, M.L. Pease, K.M. Slenkamp, L. Kovarik, M.E. Bussell, ACS Catal. 1, 917 (2011)CrossRefGoogle Scholar
  23. 23.
    L.F. Feitosa, G. Berhault, D. Laurenti, T.E. Davies, V.T. Silva, J. Catal. 340, 154 (2016)CrossRefGoogle Scholar
  24. 24.
    S. Sareen, V. Mutreja, S. Singh, B. Pal, J. Colloid Interface Sci. 461, 203 (2016)CrossRefGoogle Scholar
  25. 25.
    J.M. Falcón, L.M. Otubo, I.V. Aoki, Surf. Coat. Tech. 303, 319 (2016)CrossRefGoogle Scholar
  26. 26.
    S. Afzal, X. Quan, S. Chen, J. Wang, D. Muhammad, J. Hazard Mater. 318, 308 (2016)CrossRefGoogle Scholar
  27. 27.
    Q. Cai, J. Li, Catal. Commun. 9, 2003 (2008)CrossRefGoogle Scholar
  28. 28.
    K. Jabbour, N.E. Hassan, S. Casale, J. Estephane, H.E. Zakhem, Int. J. Hydrog. Energy 39, 7780 (2014)CrossRefGoogle Scholar
  29. 29.
    Y. Cheng, L. Zhou, J. Xu, C. Miao, W. Hua, Y. Yue, Z. Gao, Microporous Mesoporous Mater. 234, 370 (2016)CrossRefGoogle Scholar
  30. 30.
    I.T. Ghampson, C. Sepúlveda, R. Garcia, J.L.G. Fierro, N. Escalona, W.J. DeSisto, Appl. Catal. A Gen. 435–436, 51 (2012)CrossRefGoogle Scholar
  31. 31.
    M. Kruk, M. Jaronie, C.H. Ko, R. Ryoo, Chem. Mater. 12, 1961 (2000)CrossRefGoogle Scholar
  32. 32.
    M. Thommes, Chem. Ing. Tech. 82, 1059 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringChonnam National UniversityGwangjuRepublic of Korea
  2. 2.Polymer and Nanomaterial Research PartKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
  3. 3.NanobiotechnologyUniversity of Science and TechnologyDaejeonRepublic of Korea
  4. 4.Biomass and Waste Energy LaboratoryKorea Institute of Energy ResearchDaejeonRepublic of Korea
  5. 5.School of Environmental EngineeringUniversity of SeoulSeoulRepublic of Korea

Personalised recommendations