Catalytic deoxygenation of waste soybean oil over hybrid catalyst for production of bio-jet fuel: in situ supply of hydrogen by aqueous-phase reforming (APR) of glycerol

  • Il-Ho Choi
  • Kyung-Ran Hwang
  • Hye-Young Choi
  • Jin-Suk Lee


A one-pot reaction was performed to produce oxygen-free saturated hydrocarbons via the catalytic deoxygenation and hydrogenation of waste soybean oil over a hybrid catalyst (Pd/C and NiO/γ-Al2O3). We utilized in situ hydrogen generated from a reforming reaction of glycerol, a byproduct of triglyceride hydrolysis, for the one-pot reaction to produce hydrocarbons. When NiO/γ-Al2O3 (2 g) was used along with Pd/C (1 g), most of the unsaturated free fatty acids (FFAs) were hydrogenated into saturated FFAs, and the percentage of desirable hydrocarbons in the liquid product increased, in contrast to the case when only Pd/C (1 g) was used. This result means that using a hybrid catalyst is better for promoting the catalytic deoxygenation reaction than increasing the degree of loading of Pd/C, and suggests that it should be possible to decrease the amount of precious metal catalysts to be used for deoxygenation reaction.


Bio-jet fuel Deoxygenation Hydrogenation One-pot reaction Hybrid catalyst Waste soybean oil APR of glycerol In situ hydrogen 



This work was conducted under the framework of Research and Development Program of the Korea Institute of Energy Research (KIER) (B8-2432-03).


  1. 1.
    E. Sari, M. Kim, S.O. Salley, K.Y.S. Ng, Appl. Catal. A 467, 261 (2013)CrossRefGoogle Scholar
  2. 2.
    T.N. Kalnes, K.P. Koers, T. Marker, D.R. Shonnard, Environ. Prog. Sustain. Energy 28, 111 (2009)CrossRefGoogle Scholar
  3. 3.
    J. Jakkula, V. Niemi, V.M. Purola, US Patent 20,040,230,085 (2004)Google Scholar
  4. 4.
    Neste Oil Corpration, Finland, Neste Oil (2012)Google Scholar
  5. 5.
    S. Lennox, L. Kristof, T. Adam, A. Bereczky, M. Mbarawa, A. Penninger, A. Kolesnikov, Fuel 107, 409 (2013)CrossRefGoogle Scholar
  6. 6.
    D. Kubička, Collect. Czech. Chem. Commun. 73, 1015 (2008)CrossRefGoogle Scholar
  7. 7.
    L. Hermida, A.Z. Abdullah, A.R. Mohamed, Renew. Sustain. Energy Rev. 42, 1223 (2015)CrossRefGoogle Scholar
  8. 8.
    E.W. Pinga, J. Piersonb, R. Wallaceb, J.T. Millerc, T.F. Fuller, C.W. Jonesa, Appl. Catal. A 396, 85 (2011)CrossRefGoogle Scholar
  9. 9.
    M. Ibáñez, B. Valle, J. Bilbao, A.G. Gayubo, P. Castãno, Catal. Today 195, 106 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Fu, X. Lu, P.E. Savage, Chemsuschem 4, 481 (2011)CrossRefGoogle Scholar
  11. 11.
    D.R. Vardon, B.K. Sharma, H. Jaramillo, D. Kim, J.K. Choe, P.N. Ciesielski, T.J. Strathmann, Green Chem. 16, 1507 (2014)CrossRefGoogle Scholar
  12. 12.
    S.A. Hollak, M.A. Ariens, K.P. de Jong, D.S. van Es, Chemsuschem 7, 1057 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Snåre, I. Kubickova, P. Mäki-Arvela, K. Eränen, D.Y. Murzin, Ind. Eng. Chem. Res. 5, 5708 (2006)CrossRefGoogle Scholar
  14. 14.
    G.C. Diaz, N.C.O. Tapanes, L.D.T. Camara, D.A.G. Aranda, Renew. Energy 64, 113 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Il-Ho Choi
    • 1
  • Kyung-Ran Hwang
    • 1
  • Hye-Young Choi
    • 1
  • Jin-Suk Lee
    • 1
  1. 1.Biomass and Waste Energy LaboratoryKorea Institute of Energy ResearchDaejeonRepublic of Korea

Personalised recommendations