Skip to main content
Log in

Chemically dealloyed Pt–Au–Cu ternary electrocatalysts with enhanced stability in electrochemical oxygen reduction

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

We report simple synthesis of ternary Pt–Au–Cu catalysts consisting of active Pt-rich shell and Pt transition-metal alloy core for use as highly active and durable electrocatalysts in oxygen reduction reactions. The ternary Pt–Au–Cu catalysts were synthesized by chemical coreduction followed by thermal treatment and chemical dealloying. During synthesis, thermal treatment formed metal particles into high-degree alloys, and chemical dealloying led to selective dissolution of soluble Cu species from the outer surface layer of the thermally treated alloy particles, resulting in Pt-based alloys@Pt-rich surface core–shell configuration. Compared with a commercial Pt/C catalyst, our Pt1−xAu x Cu3/C-AT catalysts exhibited approximately 2.4-fold enhanced performance in oxygen reduction reactions. Among the catalysts employed in this work, Pt0.97Au0.3Cu3/C-AT showed the highest performance in terms of mass activity, specific activity, and electrochemically active surface area loss with negligible change during 10,000 potential cycles. The synthesis details, electrochemical characteristics, oxygen reduction reaction performance, and durability of the chemically dealloyed ternary Pt–Au–Cu catalysts are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Appl. Catal. B Environ. 56, 9 (2005)

    Article  CAS  Google Scholar 

  2. S. Mukerjee, S. Srinivasan, J. Electroanal. Chem. 357, 201 (1993)

    Article  CAS  Google Scholar 

  3. J.B. Joo, P. Kim, W. Kim, Y. Kim, J. Yi, J. Appl. Electrochem. 39, 135 (2009)

    Article  CAS  Google Scholar 

  4. X. Ren, S.S. Zhang, D.T. Tran, J. Read, J. Mater. Chem. 21, 10118 (2011)

    Article  CAS  Google Scholar 

  5. Y.C. Lu, H.A. Gasteiger, Y. Shao-Horn, J. Am. Chem. Soc. 133, 19048 (2011)

    Article  CAS  PubMed  Google Scholar 

  6. C. Zhang, K. Yanagisawa, H. Tao, A. Onda, T. Shou, S. Kamiya, Catal. Lett. 142, 1128 (2012)

    Article  CAS  Google Scholar 

  7. D.Z. Mezalira, M. Bron, J. Power Sources 231, 113 (2013)

    Article  CAS  Google Scholar 

  8. X. Yu, S. Ye, J. Power Sources 172, 133 (2007)

    Article  CAS  Google Scholar 

  9. Z.R. Ismagilov, M.A. Kerzhentsev, N.V. Shikina, A.S. Lisitsyn, L.B. Okhlopkova, C.N. Barnakov, M. Sakashita, T. Iijima, K. Tadokoro, Catal. Today 102–103, 58 (2005)

    Article  CAS  Google Scholar 

  10. S.J. Kim, K.S. Nahm, P. Kim, Catal. Lett. 142, 1244 (2012)

    Article  CAS  Google Scholar 

  11. S. Beak, D. Jung, K.S. Nahm, P. Kim, Catal. Lett. 134, 288 (2010)

    Article  CAS  Google Scholar 

  12. J. Ohyama, Y. Okata, Y. Yamamoto, S. Arai, A. Satsuma, Catal. Lett. 146, 22 (2016)

    Article  CAS  Google Scholar 

  13. S.J. Bae, K.S. Nahm, P. Kim, Curr. Appl. Phys. 12, 1476 (2012)

    Article  Google Scholar 

  14. D. Cao, A. Wieckowski, J. Inukai, N. Alonso-Vante, J. Electrochem. Soc. 153, A869 (2006)

    Article  CAS  Google Scholar 

  15. B. Fang, B.A. Pinaud, D.P. Wilkinson, Electrocatalysis 7, 336 (2016)

    Article  CAS  Google Scholar 

  16. Y. Sohn, J.H. Park, P. Kim, J.B. Joo, Curr. Appl. Phys. 15, 993 (2015)

    Article  Google Scholar 

  17. S. Chen, W. Sheng, N. Yabuuchi, P.J. Ferreira, L.F. Allard, Y. Shao-Horn, J. Phys. Chem. C 113, 1109 (2009)

    Article  CAS  Google Scholar 

  18. L. Chen, C. Bock, P.H.J. Mercier, B.R. MacDougall, Electrochim. Acta 77, 212 (2012)

    Article  CAS  Google Scholar 

  19. R. Loukrakpam, J. Luo, T. He, Y. Chen, Z. Xu, P.N. Njoki, B.N. Wanjala, B. Fang, D. Mott, J. Yin, J. Klar, B. Powell, C.J. Zhong, J. Phys. Chem. C 115, 1682 (2011)

    Article  CAS  Google Scholar 

  20. J.B. Joo, Y.J. Kim, W. Kim, N.D. Kim, P. Kim, Y. Kim, Y.W. Lee, J. Yi, Korean J. Chem. Eng. 25, 431 (2008)

    Article  CAS  Google Scholar 

  21. H. Kim, D. Won, K.S. Nahm, P. Kim, Catal. Lett. 144, 469 (2014)

    Article  CAS  Google Scholar 

  22. W. Roh, J. Cho, H. Kim, Catal. Lett. 37, 41 (1996)

    Article  CAS  Google Scholar 

  23. S. Mukerjee, S. Srinivasan, M.P. Soriaga, J. McBreen, J. Electrochem. Soc. 142, 1409 (1995)

    Article  CAS  Google Scholar 

  24. S. Chen, P.J. Ferreira, W. Sheng, N. Yabuuchi, L.F. Allard, Y. Shao-Horn, J. Am. Chem. Soc. 130, 13818 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. V. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. Nørskov, Angew. Chem. Int. Ed. 45, 2897 (2006)

    Article  CAS  Google Scholar 

  26. J.H. Park, Y. Sohn, D.H. Jung, P. Kim, J.B. Joo, J. Ind. Eng. Chem. 36, 109 (2016)

    Article  CAS  Google Scholar 

  27. N. Hodnik, M. Bele, S. Hočevar, Electrochem. Commun. 23, 125 (2012)

    Article  CAS  Google Scholar 

  28. G. Wang, B. Huang, L. Xiao, Z. Ren, H. Chen, D. Wang, H.D. Abruña, J. Lu, L. Zhuang, J. Am. Chem. Soc. 136, 9643 (2014)

    Article  CAS  PubMed  Google Scholar 

  29. S. Koh, P. Strasser, J. Am. Chem. Soc. 129, 12624 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. R. Yang, J. Leisch, P. Strasser, M.F. Toney, Chem. Mater. 22, 4712 (2010)

    Article  CAS  Google Scholar 

  31. P. Mani, R. Srivastava, P. Strasser, J. Phys. Chem. C 112, 2770 (2008)

    Article  CAS  Google Scholar 

  32. J. Zhang, Y. Mo, M.B. Vukmirovic, R. Klie, K. Sasaki, R.R. Adzic, J. Phys. Chem. B 108, 10955 (2004)

    Article  CAS  Google Scholar 

  33. J. Zhang, F.H.B. Lima, M.H. Shao, K. Sasaki, J.X. Wang, J. Hanson, R.R. Adzic, J. Phys. Chem. B 109, 22701 (2005)

    Article  CAS  PubMed  Google Scholar 

  34. R.R. Adzic, J. Zhang, K. Sasaki, M.B. Vukmirovic, M. Shao, J.X. Wang, A.U. Nilekar, M. Mavrikakis, J.A. Valerio, F. Uribe, Top. Catal. 46, 249 (2007)

    Article  CAS  Google Scholar 

  35. M. Shao, K. Sasaki, N.S. Marinkovic, L. Zhang, R.R. Adzic, Electrochem. Commun. 9, 2848 (2007)

    Article  CAS  Google Scholar 

  36. A. Sarkar, A. Manthiram, J. Phys. Chem. C 114, 4725 (2010)

    Article  CAS  Google Scholar 

  37. C. Wang, D. Vliet, K.L. More, N.J. Zaluzec, S. Peng, S. Sun, H. Daimon, G. Wang, J. Greeley, J. Pearson, A.P. Paulikas, G. Karapetrov, D. Strmcnik, N.M. Markovic, V.R. Stamenkovic, Nano Lett. 11, 919 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. K.S. Lee, H.Y. Park, H.C. Ham, S.J. Yoo, H.J. Kim, E. Cho, A. Manthiram, J.H. Jang, J. Phys. Chem. C 117, 9164 (2013)

    Article  CAS  Google Scholar 

  39. Y. Xing, Y. Cai, M.B. Vukmirovic, W.P. Zhou, H. Karan, J.X. Wang, R.R. Adzic, J. Phys. Chem. C 1, 3238 (2010)

    CAS  Google Scholar 

  40. J. Yang, X. Chen, X. Yang, J.Y. Ying, Energy Environ. Sci. 5, 8976 (2012)

    Article  CAS  Google Scholar 

  41. J. Zhang, K. Sasaki, E. Sutter, R.R. Adzic, Science 315, 220 (2007)

    Article  CAS  PubMed  Google Scholar 

  42. Y. Zhang, Q. Huang, Z. Zou, J. Yang, W. Vogel, H. Yang, J. Phys. Chem. C 114, 6860 (2010)

    Article  CAS  Google Scholar 

  43. S.J. Bae, S.J. Yoo, Y. Lim, S. Kim, Y. Lim, J. Choi, K.S. Nahm, S.J. Hwang, T.H. Lim, S.K. Kim, P. Kim, J. Mater. Chem. 22, 8820 (2012)

    Article  CAS  Google Scholar 

  44. D. Wang, Y. Yu, H.L. Xin, R. Hovden, P. Ercius, J.A. Mundy, H. Chen, J.H. Richard, D.A. Muller, F.J. DiSalvo, H.D. Abruña, Nano Lett. 12, 5230 (2012)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry, & Energy, Republic of Korea (no. 20133030011320).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pil Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohn, Y., Joo, J.B. & Kim, P. Chemically dealloyed Pt–Au–Cu ternary electrocatalysts with enhanced stability in electrochemical oxygen reduction. Res Chem Intermed 44, 3697–3712 (2018). https://doi.org/10.1007/s11164-018-3375-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3375-3

Keywords

Navigation