Research on Chemical Intermediates

, Volume 44, Issue 7, pp 4307–4322 | Cite as

Multifunctional (Fe0.5Ni0.5)S2 nanocrystal catalysts with high catalytic activities for reduction of I3 and electrochemical water splitting

  • Ni Xiong
  • Song Wang
  • Ying Xie
  • Qingmao Feng
  • Xiaoyan Wang
  • Mingxia Li
  • Zhikun Xu
  • Wei Zhou
  • Kai Pan


It is important to synthesize environmentally friendly transition metal sulfide catalysts with superior performance for electrochemical water splitting and reduction of I3 in dye-sensitized solar cells (DSSCs). In this work, cubic (Fe0.5Ni0.5)S2 nanocrysals with a monodispersed size of ca. 10 nm were successfully prepared via a hot-injection reaction with a Schlenk line system. Because of the FeNi-oleate complex as transition metal source, no other by-products were produced. The (Fe0.5Ni0.5)S2 nanocrystal/carbon black composite with different nanocrystal contents was control fabricated. Because the composite possessed two merits, more catalytically active sites of nanocrystals and fast electron transfer of carbon black, it is a promising catalyst for electrochemical water splitting and reduction of I3 in DSSCs. As the counter electrode catalysts for reduction of I3, DSSCs based on the composite with 57% (Fe0.5Ni0.5)S2 nanocrystal contents have a high power conversion efficiency of 6.71%, which was comparable to Pt-based DSSCs (7.05%). The electrochemical measurement showed that (Fe0.5Ni0.5)S2 nanocrystals had a good catalytic activity for reduction of I3. As the catalytic electrode for hydrogen evolution reaction (HER), the composite electrode with 57% (Fe0.5Ni0.5)S2 nanocrystal contents displayed an overpotential of 250 mV to reach the current density of 10 mA cm−2 in alkaline solution. It retained good HER activity for 1000-cycle measurements. The density functional theory showed the free energy of hydrogen adsorbed on the Ni site near S defects was − 0.12 eV, which was smaller than that of the Fe site near S defects. So, the Ni site near S defects of (Fe0.5Ni0.5)S2 was the main catalytically active site for HER. Also, the (Fe0.5Ni0.5)S2 nanocrystals displayed good electrocatalytic activity for oxygen evolution reaction. This type of double metal sulfide with monodispersed size paves the way for new insight into earth-abundance catalysts for water splitting and I3 reduction.


Monodispersed nanocrystals (Fe0.5Ni0.5)S2 Multifunctional catalyst Density functional theory Catalytic active site 



We gratefully acknowledge the support of this research by the National Natural Science Foundation of China (21473051), Natural Science Fundation of Heilongjiang Province (E2016056), the Excellent Youth of Common Universities of Heilongjiang Province (1252G045), and the Open Project Program of Key Laboratory for Photonic and Electric Bandgap Materials, Ministry of Education, Harbin Normal University, China.


  1. 1.
    M.J. Kenney, M. Gong, Y.G. Li, J.Z. Wu, J. Feng, M. Lanza, H.J. Dai, Science 342, 836 (2013)CrossRefGoogle Scholar
  2. 2.
    Y.L. Zhou, D. Yan, H.Y. Xu, J.K. Feng, X.L. Jiang, J. Yue, J. Yang, Y.T. Qian, Nano Energy 12, 528 (2015)CrossRefGoogle Scholar
  3. 3.
    D.P. Halter, F.W. Heinemann, J. Bachmann, K. Meyer, Nature 530, 317 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Caban-Acevedo, M.L. Stone, J.R. Schmidt, J.G. Thomas, Q. Ding, H.C. Chang, M.L. Tsai, J.H. He, S. Jin, Nat. Mater. 14, 1245 (2015)CrossRefGoogle Scholar
  5. 5.
    J.M. Cao, J. Zhou, Y.F. Zhang, X.W. Liu, Sci. Rep. 7, 2045 (2017)CrossRefGoogle Scholar
  6. 6.
    A. Grimaud, A. Demortiere, M. Saubanere, W. Dachraoui, M. Duchamp, M.L. Doublet, J.M. Tarascon, Nat. Energy 2, 16189 (2016)CrossRefGoogle Scholar
  7. 7.
    O. Wiranwetchayan, W. Promnopas, S. Choopun, P. Singjai, S. Thongtem, Res. Chem. Intermed. 43, 4339 (2017)CrossRefGoogle Scholar
  8. 8.
    R. Fu, Q. Yin, X. Guo, X. Tong, X. Wang, Res. Chem. Intermed. 43, 6433 (2017)CrossRefGoogle Scholar
  9. 9.
    F. Bella, C. Gerbaldi, C. Barolo, M. Gratzel, Chem. Soc. Rev. 44, 3431 (2015)CrossRefGoogle Scholar
  10. 10.
    G. Calogero, A. Bartolotta, G. DiMarco, A. DiCarlo, F. Bonaccorso, Chem. Soc. Rev. 44, 3244 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Balamurugan, T.D. Thanh, N.H. Kim, J.H. Lee, Adv. Mater. Interfaces 3, 1500348 (2016)CrossRefGoogle Scholar
  12. 12.
    J.H. Wu, Z. Lan, J.M. Lin, M.L. Huang, Y.F. Huang, L.Q. Fan, G.G. Luo, Y. Lin, Y.M. Xie, Y.L. Wei, Chem. Soc. Rev. 46, 5975 (2017)CrossRefGoogle Scholar
  13. 13.
    Y. Jiao, Y. Zheng, M.T. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 44, 2060 (2015)CrossRefGoogle Scholar
  14. 14.
    H. Zhu, J.F. Zhang, R.P. Yanzhang, M.L. Du, Q.F. Wang, G.H. Gao, J.D. Wu, G.M. Wu, M. Zhang, B. Liu, J.M. Yao, X.W. Zhang, Adv. Mater. 27, 4752 (2015)CrossRefGoogle Scholar
  15. 15.
    D. Bae, B. Seger, P.C. Vesborg, O. Hansen, I. Chorkendorff, Chem. Soc. Rev. 46, 1933 (2017)CrossRefGoogle Scholar
  16. 16.
    D. Wang, D. Astruc, Chem. Soc. Rev. 46, 816 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Liang, J. Chen, Chem. Soc. Rev. 42, 3453 (2013)CrossRefGoogle Scholar
  18. 18.
    C.E. Housecroft, E.C. Constable, Chem. Soc. Rev. 44, 8386 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Tymoczko, F. Calle-Vallejo, W. Schuhmann, A.S. Bandarenka, Nat. Commun. 7, 10990 (2016)CrossRefGoogle Scholar
  20. 20.
    E. Fabbri, M. Nachtegaal, T. Binninger, X. Cheng, B.J. Kim, J. Durst, F. Bozza, T. Graule, R. Schaublin, L. Wiles, M. Pertoso, N. Danilovic, K.E. Ayers, T.J. Schmidt, Nat. Mater. 16, 925 (2017)CrossRefGoogle Scholar
  21. 21.
    A. Grimaud, O. Diaz-Morales, B.H. Han, W.T. Hong, Y.L. Lee, L. Giordano, K.A. Stoerzinger, M.T.M. Koper, Y. Shao-Horn, Nat. Chem. 9, 457 (2017)CrossRefGoogle Scholar
  22. 22.
    W.J. Hou, Y.M. Xiao, G.Y. Han, Angew. Chem. 56, 9146 (2017)CrossRefGoogle Scholar
  23. 23.
    B.C. Qiu, Q.H. Zhu, M.M. Du, L.G. Fan, M.Y. Xing, J.L. Zhang, Angew. Chem. 56, 2684 (2017)CrossRefGoogle Scholar
  24. 24.
    J. Jiang, Q. Liu, C. Zeng, L. Ai, J. Mater. Chem. A 5, 16929 (2017)CrossRefGoogle Scholar
  25. 25.
    M.X. Wu, X.A. Lin, A. Hagfeldt, T.L. Ma, Angew. Chem. 50, 3520 (2011)CrossRefGoogle Scholar
  26. 26.
    X.C. Wang, X.J. Lu, B.C. Sun, Nat. Rev. Immunol. 17, 591 (2017)CrossRefGoogle Scholar
  27. 27.
    Q.W. Jiang, G.R. Li, X.P. Gao, Chem. Commun. 48, 7603 (2009)Google Scholar
  28. 28.
    Y.Y. Dou, G.R. Li, J. Song, X.P. Gao, Phys. Chem. Chem. Phys. 14, 1339 (2012)CrossRefGoogle Scholar
  29. 29.
    C. Tang, R. Zhang, W.B. Lu, L.B. He, X. Jiang, A.M. Asiri, X.P. Sun, Adv. Mater. 29, 1602441 (2017)CrossRefGoogle Scholar
  30. 30.
    X. Long, G. Li, Z. Wang, H. Zhu, T. Zhang, S. Xiao, W. Guo, S. Yang, J. Am. Chem. Soc. 137, 11900 (2015)CrossRefGoogle Scholar
  31. 31.
    J. Jiang, S. Lu, H. Gao, X. Zhang, H.Q. Yu, Nano Energy 27, 526 (2016)CrossRefGoogle Scholar
  32. 32.
    D. Yue, X. Qian, M. Kan, M. Ren, Y. Zhu, L. Jiang, Y. Zhao, Appl. Catal. B Environ. 209, 155 (2017)CrossRefGoogle Scholar
  33. 33.
    Y. Liao, K. Pan, Q.J. Pan, G.F. Wang, W. Zhou, H.G. Fu, Nanoscale 7, 1623 (2015)CrossRefGoogle Scholar
  34. 34.
    X. Wang, B. Batter, Y. Xie, K. Pan, Y. Liao, C. Lv, M. Li, S. Sui, H. Fu, J. Mater. Chem. A 3, 15905 (2015)CrossRefGoogle Scholar
  35. 35.
    Q.Y. Lin, Q. Lin, Y.Q. Zhang, H.X. Lin, T.H. Zhou, S.B. Ning, X.X. Wang, Res. Chem. Intermed. 43, 5067 (2017)CrossRefGoogle Scholar
  36. 36.
    T. Tian, L. Huang, L. Ai, J. Jiang, J. Mater. Chem. A 5, 20985 (2017)CrossRefGoogle Scholar
  37. 37.
    Z. Luo, J. Lu, C. Flox, R. Nafria, A. Genç, J. Arbiol, J. Llorca, M. Ibáñez, J.R. Morante, A. Cabot, J. Mater. Chem. A 4, 16706 (2016)CrossRefGoogle Scholar
  38. 38.
    G. Gyawali, J. Son, N.H. Hao, S.H. Cho, T.H. Kim, S.W. Lee, Res. Chem. Intermed. 43, 5055 (2017)CrossRefGoogle Scholar
  39. 39.
    H. Li, X. Qian, C. Xu, S. Huang, C. Zhu, X. Jiang, L. Shao, L. Hou, A.C.S. Appl, Mater. Interfaces 9, 28394 (2017)CrossRefGoogle Scholar
  40. 40.
    M.R. Gao, Z.Y. Lin, J. Jiang, H.B. Yao, Y.M. Lu, Q. Gao, W.T. Yao, S.H. Yu, Chemistry 17, 5068 (2011)CrossRefGoogle Scholar
  41. 41.
    C. Tang, Z. Pu, Q. Liu, A.M. Asiri, X. Sun, Y. Luo, Y. He, ChemElectroChem 2, 1903 (2015)CrossRefGoogle Scholar
  42. 42.
    S. Mourdikoudis, L.M. Liz-Marzán, Chem. Mater. 25, 1465 (2013)CrossRefGoogle Scholar
  43. 43.
    S.J. Yuan, Z.J. Zhou, Z.L. Hou, W.H. Zhou, R.Y. Yao, Y. Zhao, S.X. Wu, Chem. Eur. J. 19, 10107 (2013)CrossRefGoogle Scholar
  44. 44.
    L. Li, Q. Lu, W. Li, X. Li, A. Hagfeldt, W. Zhang, M. Wu, J. Power Sources 308, 37 (2016)CrossRefGoogle Scholar
  45. 45.
    J.S. Li, Y. Wang, C.H. Liu, S.L. Li, Y.G. Wang, L.Z. Dong, Z.H. Dai, Y.F. Li, Y.Q. Lan, Nat. Commun. 7, 11204 (2016)CrossRefGoogle Scholar
  46. 46.
    J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 152, J23 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Ni Xiong
    • 1
  • Song Wang
    • 1
  • Ying Xie
    • 1
  • Qingmao Feng
    • 1
  • Xiaoyan Wang
    • 1
  • Mingxia Li
    • 1
  • Zhikun Xu
    • 2
  • Wei Zhou
    • 1
  • Kai Pan
    • 1
  1. 1.Key Laboratory of Functional Inorganic Material Chemistry, Ministry of EducationHeilongjiang UniversityHarbinPeople’s Republic of China
  2. 2.Key Laboratory for Photonic and Electric Bandgap Materials, Ministry of EducationHarbin Normal UniversityHarbinPeople’s Republic of China

Personalised recommendations