Research on Chemical Intermediates

, Volume 44, Issue 7, pp 4277–4294 | Cite as

Synthesis of incompletely caged silsesquioxane (T7-POSS) compounds via a versatile three-step approach

  • Miaofen Ye
  • Yiwei Wu
  • Wenchao Zhang
  • Rongjie Yang


Three kinds of incompletely condensed polyhedral oligomeric silsesquioxanes (T7-POSS) with three Si–OH groups: (i-C4H9)7Si7O9(OH)3, (i-C8H17)7Si7O9(OH)3 and (C6H5)7Si7O9(OH)3 were prepared by a versatile three-step approach (hydrolysis, condensation, and neutralization) from i-C4H9Si(OEt)3, i-C8H17Si(OEt)3, and C6H5Si(OEt)3, respectively, with the LiOH·H2O as catalyst. The structures of the three T7-POSS were characterized by FTIR, 1H NMR, 13C NMR, 29Si NMR, MALDI-TOF MS and XRD. The accurate incompletely caged structure of the three T7-POSS indicated that the built-up three-step approach is a versatile and effective way to synthesize T7-POSS with high yield. The best reaction conditions to synthesize the isobutyl-T7, isooctyl-T7 and phenyl-T7 POSS have been suggested, involving acetone and a co-solvent, the molar ratio of the RSi(OEt)3: LiOH·H2O: H2O and the reaction temperature. The thermal stability of the three T7-POSS were characterized by TGA, showing different degradation behaviors. The thermal stability of phenyl-T7 POSS was the highest among the three T7-POSS.

Graphical Abstract


Triethoxysilane Incompletely caged silsesquioxane Polyhedral oligomeric silsesquioxanes T7-POSS POSS 



This project was funded by the National Program on Key Research Project (No. 2016YFB0302101), the National Natural Science Foundation of China (No. 51603011), and the International Science and Technology Cooperation Program of China (No. S2014ZR0465).


  1. 1.
    P.D. Lickiss, F. Rataboul, Adv. Organomet. Chem. 57, 116 (2008)Google Scholar
  2. 2.
    S. Chanmungkalakul, V. Ervithayasuporn, S. Hanprasit, M. Masik, N. Prigyai, S. Kiatkamjornwong, Chem. Commun. 53, 12108 (2017)CrossRefGoogle Scholar
  3. 3.
    P. Sangtrirutnugul, T. Chaiprasert, W. Hunsiri, T. Jitjaroendee, P. Songkhum, K. Laohhasurayotin, T. Osotchan, V. Ervithayasuporn, ACS Appl. Mat. Interfaces 9, 12812 (2017)CrossRefGoogle Scholar
  4. 4.
    R. Kunthom, T. Jaroentomeechai, V. Ervithayasuporn, Polymer 108, 173 (2017)CrossRefGoogle Scholar
  5. 5.
    C. Shen, Y. Han, B. Wang, J. Tang, H. Chen, Q. Lin, RSC Adv. 5, 53782 (2015)CrossRefGoogle Scholar
  6. 6.
    K. Pielichowski, J. Njuguna, B. Janowski, J. Pielichowski, Adv. Polym. Sci. 201, 225 (2006)CrossRefGoogle Scholar
  7. 7.
    F.J. Feher, T.A. Budzichowski, K.J. Weller, J. Am. Chem. Soc. 111, 7288 (1989)CrossRefGoogle Scholar
  8. 8.
    D.B. Cordes, P.D. Lickiss, F. Rataboul, Chem. Rev. 110, 2081 (2010)CrossRefGoogle Scholar
  9. 9.
    M. Zhao, Y. Feng, Y. Li, G. Li, Y. Wang, Y. Han, J. Macromol. Sci. A 51, 639 (2014)CrossRefGoogle Scholar
  10. 10.
    I. Blanco, F.A. Bottino, L. Abate, Thermochim. Acta 623, 50 (2016)CrossRefGoogle Scholar
  11. 11.
    I. Blanco, F.A. Bottino, Polym. Degrad. Stab. 129, 374 (2016)CrossRefGoogle Scholar
  12. 12.
    V. Ervithayasuporn, X. Wang, Y. Kawakami, Chem. Commun. 34, 5130 (2009)CrossRefGoogle Scholar
  13. 13.
    V. Ervithayasuporn, J. Abe, X. Wang, T. Matsushima, H. Murata, Y. Kawakami, Tetrahedron 66, 9348 (2010)CrossRefGoogle Scholar
  14. 14.
    F. Carniato, E. Boccaleri, L. Marchese, A. Fina, D. Tabuani, G. Camino, Eur. J. Inorg. Chem. 4, 585 (2007)CrossRefGoogle Scholar
  15. 15.
    L. Zhang, H.C.L. Bbenhuis, G. Gerritsen, N.N. Bhriain, P.C.M.M. Magusin, B. Mezari, W. Han, R.A.V. Santen, Q. Yang, C. Li, Chemistry 13, 1210 (2007)CrossRefGoogle Scholar
  16. 16.
    H.M. Cho, H. Weissman, S.R. Wilson, J.S. Moore, J. Am. Chem. Soc. 128, 14742 (2006)CrossRefGoogle Scholar
  17. 17.
    P.A. Wheeler, R. Misra, R.D. Cook, S.E. Morgan, J. Appl. Polym. Sci. 108, 2503 (2008)CrossRefGoogle Scholar
  18. 18.
    M. Conradi, A. Kocijan, M. Zorko, I. Jerman, Prog. Org. Coat. 75, 392 (2012)CrossRefGoogle Scholar
  19. 19.
    C.L. Toh, L. Yang, K.P. Pramoda, S.K. Lau, X. Lu, Polym. Int. 62, 1492 (2013)CrossRefGoogle Scholar
  20. 20.
    K. Liang, H. Toghiani, C.U.P. Jr, Inorg. Organomet. Polym. Mater. 21, 128 (2011)CrossRefGoogle Scholar
  21. 21.
    Y.R. Liu, Y.D. Huang, L. Liu, Compos. Sci. Technol. 67, 2864 (2007)CrossRefGoogle Scholar
  22. 22.
    F.J. Feher, D.A. Newman, J.F. Walzer, J. Am. Chem. Soc. 111, 1741 (1989)CrossRefGoogle Scholar
  23. 23.
    F.J. Feher, T.A. Budzichowski, Organomet. 10, 812 (1991)CrossRefGoogle Scholar
  24. 24.
    B. Janowski, K. Pielichowski, J. Organomet. Chem. 693, 905 (2008)CrossRefGoogle Scholar
  25. 25.
    W.L. Dong, Y. Kawakami, Polym. J. 39, 230 (2007)CrossRefGoogle Scholar
  26. 26.
    K. Yoshida, K. Ito, H. Oikawa, M. Yamahiro, Y. Morimoto, K. Ohguma, K. Watanabe, N. Ootake. US 20,040,068,074 (2004)Google Scholar
  27. 27.
    J.D. Lichtenhan, J.J. Schwab, W. Reinerth, M.J. Carr, Y.Z. An, F.J. Feher, R. Terroba. WO 01/10871 A1 (2001)Google Scholar
  28. 28.
    F.J. Feher, F. Nguyen, D. Soulivong, Z.W.A. Ziller, Chem. Commun. 17, 1705 (1999)CrossRefGoogle Scholar
  29. 29.
    F.J. Feher, R. Terroba, J.W. Ziller, Chem. Commun. 21, 2153 (1999)CrossRefGoogle Scholar
  30. 30.
    F.J. Feher, R. Terroba, J.W. Ziller, Chem. Commun. 22, 2309 (1999)CrossRefGoogle Scholar
  31. 31.
    F.J. Feher, Chem. Commun. 3, 399 (1998)CrossRefGoogle Scholar
  32. 32.
    F.J. Feher, D. Soulivong, F. Nguyen, Chem. Commun. 12, 1279 (1998)CrossRefGoogle Scholar
  33. 33.
    S.H. Phillips, T.S. Haddad, S.J. Tomczak, Solid State. Mater. Sci. 8, 21 (2004)Google Scholar
  34. 34.
    R.J.M. Hanssen, R.V. Santen, H.L. Abbenhuis, Eur. J. Inorg. Chem. 4, 675 (2004)CrossRefGoogle Scholar
  35. 35.
    O. Smrtka, J. Jancar, Chem. Pap. 62, 504 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and TechnologyBeijing Institute of TechnologyBeijingChina

Personalised recommendations