Research on Chemical Intermediates

, Volume 44, Issue 7, pp 4245–4258 | Cite as

Design and synthesis of novel natural clinoptilolite-MnFe2O4 nanocomposites and their catalytic application in the facile and efficient synthesis of chalcone derivatives through Claisen-Schmidt reaction

  • Reza Aryan
  • Noshin Mir
  • Hamid Beyzaei
  • Amin Kharade


A series of three novel nanocomposites were prepared by modifying the surface of natural clinoptilolite using various amounts of manganese ferrite (MnFe2O4) nanoparticles. These manganese ferrite-modified nanocomposites (MFO–NC) were fully characterized by XRD, FT-IR, EDX, VSM and TEM analyses. One of these novel nanocomposites with 40 wt% of manganese ferrite in clinoptilolite (MFO–NC-3) showed a strong catalytic behavior in the aldol-type Claisen–Schmidt reaction for the synthesis of chalcones. A strong catalytic synergy was observed between nano-MnFe2O4 particles and natural clinoptilolite in the structure of these nanocomposites. The products with a broad range of substituents on the reactants were efficiently obtained under room-temperature conditions within relatively short reaction times with good to excellent yields in the presence of one of the prepared MFO–NC nanocomposites. This nanocomposite also showed a strong stability and substantial reusability in the synthesis of chalcones.


Heterogeneous catalysis Manganese ferrite Natural clinoptilolite Nanocomposite Chalcones Claisen–Schmidt reaction 



The corresponding author gratefully acknowledges helpful scientific consultations from Dr. Masoomeh Nojavan. Partial financial support of this work by University of Zabol Research Council and the Dean of the Faculty of Science are also appreciated.

Supplementary material

11164_2018_3366_MOESM1_ESM.docx (1021 kb)
Supplementary material 1 (DOCX 1021 kb)


  1. 1.
    R.C. Pullar, Prog. Mater Sci. 57, 1191 (2012)CrossRefGoogle Scholar
  2. 2.
    E. Casbeer, V.K. Sharma, X.Z. Li, Sep. Purif. Technol. 87, 1 (2012)CrossRefGoogle Scholar
  3. 3.
    G. Kulkarni, K. Kannan, T. Arunarkavalli, C. Rao, Phys Rev B 49(724), 727 (1994)Google Scholar
  4. 4.
    J. Lu, S. Ma, J. Sun, C. Xia, C. Liu, Z. Wang, X. Zhao, F. Gao, Q. Gong, B. Song, Biomater. 30, 2919 (2009)CrossRefGoogle Scholar
  5. 5.
    U.I. Tromsdorf, N.C. Bigall, M.G. Kaul, O.T. Bruns, M.S. Nikolic, B. Mollwitz, R.A. Sperling, R. Reimer, H. Hohenberg, W.J. Parak, Nano Lett. 7, 2422 (2007)CrossRefPubMedGoogle Scholar
  6. 6.
    M.P. Leal, S. Rivera-Fernández, J.M. Franco, D. Pozo, M. Jesús, M.L. García-Martín, Nanoscale 7, 2050 (2015)CrossRefGoogle Scholar
  7. 7.
    V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, J. Magn. Magn. Mater. 321, 2035 (2009)CrossRefGoogle Scholar
  8. 8.
    J.P. Chen, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, E. Devlin, A. Kostikas, Phys. Rev. B 54, 9288 (1996)CrossRefGoogle Scholar
  9. 9.
    T. Valdés-Solís, P. Valle-Vigón, S. Álvarez, G. Marbán, A.B. Fuertes, Catal. Commun. 8, 2037 (2007)CrossRefGoogle Scholar
  10. 10.
    G. Brahmachari, S. Laskar, P. Barik, RSC Adv. 3, 14245 (2013)CrossRefGoogle Scholar
  11. 11.
    L. Menini, M.C. Pereira, L.A. Parreira, J.D. Fabris, E.V. Gusevskaya, J. Catal. 254, 355 (2008)CrossRefGoogle Scholar
  12. 12.
    P. Guo, G. Zhang, J. Yu, H. Li, X.S. Zhao, Colloid Surf. A 395, 168 (2012)CrossRefGoogle Scholar
  13. 13.
    B. Sahoo, S.K. Sahu, S. Nayak, D. Dhara, P. Pramanik, Catal. Sci. Technol. 2, 1367 (2012)CrossRefGoogle Scholar
  14. 14.
    Z. Özçelik, G.S.P. Soylu, I. Boz, Chem. Eng. J. 155, 94 (2009)CrossRefGoogle Scholar
  15. 15.
    S.M. Baghbanian, N. Rezaei, H. Tashakkorian, Green Chem. 15, 3446 (2013)CrossRefGoogle Scholar
  16. 16.
    H. Choo, H.L. Kevan, J. Phys. Chem. B 105, 6353 (2001)CrossRefGoogle Scholar
  17. 17.
    S. Jafari, A. Nezamzadeh-Ejhieh, J. Colloid Interf. Sci. 490, 478 (2017)CrossRefGoogle Scholar
  18. 18.
    J. Esmaili-Hafshejani, A. Nezamzadeh-Ejhieh, J. Hazard. Mater. 316, 194 (2016)CrossRefPubMedGoogle Scholar
  19. 19.
    H. Sajjadi-Ghotbabadi, S. Javanshir, F. Rostami-Charati, Catal. Lett. 146(338), 338 (2016)CrossRefGoogle Scholar
  20. 20.
    H.N. El-Sohly, A.S. Joshi, A.C. Nimrod, L.A. Walker, A.M. Clark, Planta Med. 67, 87 (2001)CrossRefGoogle Scholar
  21. 21.
    V.E. Buckwold, R.J.H. Wilson, A. Nalca, B.B. Beer, T.G. Voss, J.A. Turpin, R.W. Buckheit, J. Wei, M. Wenzel-Mathers, E.M. Walton, R.J. Smith, M. Pallansch, P. Ward, J. Wells, L. Chuvala, S. Sloane, R. Paulman, J. Russell, T. Hartman, R. Patak, Antivir. Res. 61, 57 (2004)CrossRefPubMedGoogle Scholar
  22. 22.
    R. Sen, M. Chatterjee, Phytomed. 18, 1056 (2011)CrossRefGoogle Scholar
  23. 23.
    T. Enoki, H. Ohnogi, K. Nagamine, Y. Kudo, K. Sugiyama, M. Tanabe, E. Kobayashi, H. Sagawa, I. Kato, J. Agric. Food Chem. 55, 6013 (2007)CrossRefPubMedGoogle Scholar
  24. 24.
    M. Nasr-Esfahani, M. Daghaghale, M. Taei, J. Chin. Chem. Soc. 64, 17 (2017)CrossRefGoogle Scholar
  25. 25.
    C.-B. Miao, Y.-M. Zeng, T. Shi, R. Liu, P.-F. Wei, X.-Q. Sun, H.-T. Yang, J. Org. Chem. 81, 43 (2016)CrossRefPubMedGoogle Scholar
  26. 26.
    F. Liu, J.-F. Yang, H. Liu, W.-Z. Wei, Y.-M. Ma, J. Chin. Chem. Soc. 63, 254 (2016)CrossRefGoogle Scholar
  27. 27.
    A.H. Jadhav, A.C. Lim, G.M. Thorat, H. Jadhav, J.G. Seo, RSC Adv. 6, 31675 (2016)CrossRefGoogle Scholar
  28. 28.
    C. Tamuly, I. Saikia, I.M. Hazarika, M. Bordoloi, N. Hussain, M.R. Das, K. Deka, RSC Adv. 5, 8604 (2015)CrossRefGoogle Scholar
  29. 29.
    S. Wu, X. Ma, J. Ran, Y. Zhang, F. Qin, Y. Liu, RSC Adv. 5, 14221 (2015)CrossRefGoogle Scholar
  30. 30.
    N. Kumar, L.S. Chauhan, C.S. Sharma, N. Dashora, R. Bera, Med. Chem. Res. 24, 2580 (2015)CrossRefGoogle Scholar
  31. 31.
    B.I. Roman, T. De Ryck, A. Patronov, H.S. Slavov, B.W.A. Van Hoecke, A.R. Katritzky, M.E. Bracke, C.V. Stevens, Eur. J. Med. Chem. 101, 627 (2015)CrossRefPubMedGoogle Scholar
  32. 32.
    M. Sugiura, Y. Ashikari, M. Nakajima, J. Org. Chem. 80, 8830 (2015)CrossRefPubMedGoogle Scholar
  33. 33.
    D. Rocchi, J.F. Gonzalez, C.J. Menendez, J. Carlos, Molecules 19, 7317 (2014)CrossRefPubMedGoogle Scholar
  34. 34.
    D. Kakati, N.C. Barua, Tetrahedron 70, 637 (2014)CrossRefGoogle Scholar
  35. 35.
    E.M. Schneider, R.A. Raso, C.J. Hofer, M. Zeltner, R.D. Stettler, S.C. Hess, R.N. Grass, W.J. Stark, J. Org. Chem. 79, 10908 (2014)CrossRefPubMedGoogle Scholar
  36. 36.
    M. Tiecco, R. Germani, F. Cardellini, RSC Adv. 6, 43740 (2016)CrossRefGoogle Scholar
  37. 37.
    R. Aryan, H. Beyzaei, M. Nojavan, T. Dianatipour, Res. Chem. Int. 42, 4417 (2016)CrossRefGoogle Scholar
  38. 38.
    R. Aryan, H. Beyzaei, M. Nojavan, M. Rezaei, Res. Chem. Int. 43, 4731 (2017)CrossRefGoogle Scholar
  39. 39.
    M. Saadat, A. Nezamzadeh-Ejhieh, Electrochim. Acta 217, 163 (2016)CrossRefGoogle Scholar
  40. 40.
    H.B. Yener, M. Yılmaz, Ö. Deliismail, S.F. Özkan, Ş.Ş. Helvacı, Sep. Purif. Technol. 173, 17 (2017)CrossRefGoogle Scholar
  41. 41.
    H. Derikvandi, A. Nezamzadeh-Ejhieh, J. Mol. Catal. A: Chem. 426, 158 (2017)CrossRefGoogle Scholar
  42. 42.
    F. Alidusty, A. Nezamzadeh-Ejhieh, Int. J. Hydrog. Energy 41, 6288 (2016)CrossRefGoogle Scholar
  43. 43.
    Y. Huang, W. Wang, Q. Feng, F. Dong, J. Saudi Chem. Soc. 21, 58 (2017)CrossRefGoogle Scholar
  44. 44.
    S.M. Baghbanian, RSC Adv. 4, 59397 (2014)CrossRefGoogle Scholar
  45. 45.
    J. Hu, G. Chen, Langmuir 21, 11173 (2005)CrossRefPubMedGoogle Scholar
  46. 46.
    O. Korkuna, R. Leboda, J. Skubiszewska-Zie, T. Vrublevs’ka, V.M. Gun’ko, J. Ryczkowski, Micropor. Mesopor. Mater. 87, 243 (2006)CrossRefGoogle Scholar
  47. 47.
    E.M. Flanigen, H. Khatami, H.A. Szymanski, Infrared Structural Studies of Zeolite Frameworks (ACS publications, Washington, 1971)Google Scholar
  48. 48.
    S. Shafiu, R. Topkaya, A. Baykal, M.S. Toprak, Mater. Res. Bull. 48, 4066 (2013)CrossRefGoogle Scholar
  49. 49.
    M. Pal, R. Rakshit, K. Mandal, A.C.S. Appl, Mater. Interface 6, 4903 (2014)CrossRefGoogle Scholar
  50. 50.
    A. Goyal, S. Bansal, P. Samuel, V. Kumar, S. Singhal, J. Mater. Chem. 2, 18848 (2014)CrossRefGoogle Scholar
  51. 51.
    I. Kazi, S. Guha, G. Sekar, Org. Lett. 19, 1244 (2017)CrossRefPubMedGoogle Scholar
  52. 52.
    H. Samimi, H. Kiyani, Z. Shams, J. Chem. Res. 37, 282 (2013)CrossRefGoogle Scholar
  53. 53.
    Q. Chidan Kumar, B. Ching Kheng, H.K. Fun, S. Chandraju, M. Karabacak, J. Mol. Struct. 1116, 135 (2016)CrossRefGoogle Scholar
  54. 54.
    J.Z. Wu, J.L. Li, Y.P. Cai, Y. Pan, F. Ye, Y. Zhang, Y. Zhao, S. Yang, X. Li, G. Liang, J. Med. Chem. 54, 8110 (2011)CrossRefPubMedGoogle Scholar
  55. 55.
    M. Mehra, J. Ind. Chem. Soc. 33, 618 (1956)Google Scholar
  56. 56.
    L. Gosney, Tetrahedron 29, 1697 (1973)CrossRefGoogle Scholar
  57. 57.
    Z. Gonda, Z. Novák, Chem. Eur. J. 21, 16801 (2015)CrossRefPubMedGoogle Scholar
  58. 58.
    F. Liu, J.F. Yang, H. Liu, W.Z. Wei, Y.M. Ma, J. Chin. Chem. Soc. 63, 254 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of ZabolZabolIran

Personalised recommendations