Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 7, pp 4163–4177 | Cite as

Synthesis and characterization of crude hydrotalcite Mg–Al–CO3: study of thymol adsorption

Article
  • 26 Downloads

Abstract

The study of the adsorption of thymol on a hydrotalcite of synthesis Mg3Al–CO3 (HT3) of molar ratio Mg/Al = 3 and on its counterpart enabled at 500 °C (HT3-C) was conducted in hexane at a concentration of 40 mg L−1 of thymol. Hydrotalcite HT3 was prepared via coprecipitation at a constant pH of 10 and characterized by X-ray diffraction, infrared spectroscopy, nitrogen adsorption–desorption methods and thermal analysis (TGA/DTA). The adsorption of the thymol tests were monitored by UV–visible spectroscopy. The results show that the calcined hydrotalcite (HT3-C) has a capacity of adsorption of thymol (8 mg g−1) much greater than that of HT3 (4 mg g−1), and the experimental points are described by the isotherm model of the Freundlich of both materials.

Keywords

Layered double hydroxide LDH Hydrotalcite Adsorption Thymol 

References

  1. 1.
    W.T. Reichle, Solid State Ion. 22, 135 (1986)CrossRefGoogle Scholar
  2. 2.
    A.V.F. Cavani, F. Trifiro, Catal. Today 11, 173 (1991)CrossRefGoogle Scholar
  3. 3.
    A. Vanaamudan, B. Chavada, P. Padmaja, J. Environ. Chem. Eng. 4, 2617 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Taguchi, F. Schuth, Microporous Mesoporous Mater. 77, 1 (2005)CrossRefGoogle Scholar
  5. 5.
    E. Manasse, Atti Della Soc. Toscana Di Sci. Nat. 24, 92 (1915)Google Scholar
  6. 6.
    W.-Z. Li, J. Lu, J.-S. Chen, G.-D. Li, Y.-S. Jiang, L.-S. Li, B.-Q Huang, J. Chem. Technol. Biotechnol. 81, 89 (2006)CrossRefGoogle Scholar
  7. 7.
    Y. Lin, Q. Fang, B. Chen, J. Environ. Sci. China 26, 493 (2014)CrossRefGoogle Scholar
  8. 8.
    F. Yang, S. Sun, X. Chen, Y. Chang, F. Zha, Z. Lei, Appl. Clay Sci. 123, 134 (2016)CrossRefGoogle Scholar
  9. 9.
    L. Arab, M. Boutahala, B. Djellouli, C. R. Chim. 17, 860 (2014)CrossRefGoogle Scholar
  10. 10.
    C. Lei, X. Zhu, B. Zhu, C. Jiang, Y. Le, J. Yu, J. Hazard. Mater. 321, 801 (2017)CrossRefGoogle Scholar
  11. 11.
    T. Wang, Z. Cheng, B. Wang, W. Ma, Chem. Eng. J. 181–182, 182 (2012)CrossRefGoogle Scholar
  12. 12.
    Z.Q. Zhang, H.Y. Zeng, X.J. Liu, S. Xu, C.R. Chen, J.Z. Du, J. Taiwan Inst. Chem. Eng. 60, 361 (2016)CrossRefGoogle Scholar
  13. 13.
    L. Xiao, W. Ma, M. Han, Z. Cheng, J. Hazard. Mater. 186, 690 (2011)CrossRefGoogle Scholar
  14. 14.
    L. Deng, Z. Shi, X. Peng, S. Zhou, J. Alloys Compd. 688, 101 (2016)CrossRefGoogle Scholar
  15. 15.
    R.M.M. dos Santos, R.G.L. Gonçalves, V.R.L. Constantino, C.V. Santilli, P.D. Borges, J. Tronto, F.G. Pinto, Appl. Clay Sci. 140, 132 (2017)CrossRefGoogle Scholar
  16. 16.
    R. Extremera, I. Pavlovic, M.R. Pérez, C. Barriga, Chem. Eng. J. 213, 392 (2012)CrossRefGoogle Scholar
  17. 17.
    A. Zambonelli, A.Z. D’Aulerio, A. Severi, S. Benvenuti, L. Maggi, A. Bianchi, J. Essent. Oil Res. 16, 69 (2004)CrossRefGoogle Scholar
  18. 18.
    T. Mangena, N. Muyima, Lett. Appl. Microbiol. 28, 291 (1999)CrossRefGoogle Scholar
  19. 19.
    M.B. Isman, Annu. Rev. Entomol. 51, 45 (2006)CrossRefGoogle Scholar
  20. 20.
    B. Conti, A. Canale, P.L. Cioni, G. Flamini, Bull. Insectol. 63, 197 (2010)Google Scholar
  21. 21.
    S.M. Kéita, C. Vincent, J.P. Schmit, J.T. Arnason, A. Bélanger, J. Stored Prod. Res. 37, 339 (2001)CrossRefGoogle Scholar
  22. 22.
    M.M.G. Nguemtchouin, M.B. Ngassoum, L.S.T. Ngamo, P.M. Mapongmetsem, J. Sieliechi, F. Malaisse, G.C. Lognay, E. Haubruge, T. Hance, Appl. Clay Sci. 44, 1 (2009)CrossRefGoogle Scholar
  23. 23.
    M.M.G. Nguemtchouin, M.B. Ngassoum, L.S.T. Ngamo, X. Gaudu, M. Cretin, Crop Prot. 29, 985 (2010)CrossRefGoogle Scholar
  24. 24.
    M.G.M. Nguemtchouin, M.B. Ngassoum, P. Chalier, R. Kamga, L.S.T. Ngamo, M. Cretin, J. Stored Prod. Res. 52, 57 (2013)CrossRefGoogle Scholar
  25. 25.
    A.R. Chami, Patent, Advanced Scientific Developments (2014)Google Scholar
  26. 26.
    N.V. Yanishlieva, E.M. Marinova, M.H. Gordon, V.G. Raneva, Food Chem. 64, 59 (1999)CrossRefGoogle Scholar
  27. 27.
    R.D. MacPherson, Anaesthesia 56, 965 (2001)CrossRefGoogle Scholar
  28. 28.
    Y. Huang, X. Ma, G. Liang, H. Yan, Chem. Eng. J. 141, 1 (2008)CrossRefGoogle Scholar
  29. 29.
    S. Lagergren, Handlingar 4, 1 (1898)Google Scholar
  30. 30.
    Y.S. Ho, G. McKay, Chem. Eng. J. 70, 115 (1998)CrossRefGoogle Scholar
  31. 31.
    Y.S. Ho, Scientometrics 59, 171 (2004)CrossRefGoogle Scholar
  32. 32.
    Y.S. Ho, G. McKay, Process Biochem. 34, 451 (1999)CrossRefGoogle Scholar
  33. 33.
    G. McKay, V.J.P. Poots, J. Chem. Technol. Biotechnol. 30, 279 (1980)CrossRefGoogle Scholar
  34. 34.
    J.C. Weber, W.J. Morris, J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89, 31 (1963)Google Scholar
  35. 35.
    I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918)CrossRefGoogle Scholar
  36. 36.
    G. Limousin, J.P. Gaudet, L. Charlet, S. Szenknect, V. Barthès, M. Krimissa, Appl. Geochem. 22, 249 (2007)CrossRefGoogle Scholar
  37. 37.
    K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, I&EC Fundam. 5, 212 (1966)CrossRefGoogle Scholar
  38. 38.
    W. Weber, R.K. Chakravorti, Am. Inst. Chem. Eng. J. 20, 229 (1974)Google Scholar
  39. 39.
    G. Bayramoglu, B. Altintas, M.Y. Arica, Chem. Eng. J. 152, 339 (2009)CrossRefGoogle Scholar
  40. 40.
    H. M. Freundlich, J. Phys. Chem. 57, 385 (1906)Google Scholar
  41. 41.
    T. Kameda, M. Saito, Y. Umetsu, J. Alloys Compd. 402, 46 (2005)CrossRefGoogle Scholar
  42. 42.
    J. Yu, J. Li, H. Wei, J. Zheng, H. Su, X. Wang, J. Mol. Catal. A: Chem. 395, 128 (2014)CrossRefGoogle Scholar
  43. 43.
    M. Naciri Bennani, D. Tichit, F. Figueras, S. Abouarnadasse, J. Chim. Phys. Phys. Chim. Biol. 96, 498 (1999)CrossRefGoogle Scholar
  44. 44.
    F. Bruna, R. Celis, M. Real, J. Cornejo, J. Hazard. Mater. 225–226, 74 (2012)CrossRefGoogle Scholar
  45. 45.
    M.J. Hernandez-Moreno, M.A. Ulibarri, J.L. Rendon, C.J. Serna, Phys. Chem. Miner. 12, 34 (1985)Google Scholar
  46. 46.
    J.C.A.A. Roelofs, J.A. van Bokhoven, A.J. van Dillen, J.W. Geus, K.P. de Jong, Chem. A Eur. J. 8, 5571 (2002)CrossRefGoogle Scholar
  47. 47.
    S. Mekdad, M. Naciri Bennani, H. Ahlafi, J. Adv. Chem. 8, 10 (2014)Google Scholar
  48. 48.
    D. Stošić, F. Hosoglu, S. Bennici, A. Travert, M. Capron, F. Dumeignil, J.-L. Couturier, J.-L. Dubois, A. Auroux, Catal. Commun. 89, 14 (2017)CrossRefGoogle Scholar
  49. 49.
    M.G.M. Nguemtchouin, M.B. Ngassoum, R. Kamga, S. Deabate, S. Lagerge, E. Gastaldi, P. Chalier, M. Cretin, Appl. Clay Sci. 104, 110 (2015)CrossRefGoogle Scholar
  50. 50.
    A.S. Özcan, B. Erdem, A. Özcan, J. Colloid Interface Sci. 280, 44 (2004)CrossRefGoogle Scholar
  51. 51.
    A. Bakhti, M.S. Ouali, Rev. Des Sci. L’eau 20, 241 (2007)Google Scholar
  52. 52.
    M. El Miz, S. Salhi, I. Chraibi, A. El Bachiri, M. Fauconnier, A. Tahani, Open J. Phys. Chem. 4, 98 (2014)CrossRefGoogle Scholar
  53. 53.
    W.T. Tsai, C.W. Lai, K.J. Hsien, J. Colloid Interface Sci. 263, 29 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Chemistry-Biology Applied to the Environment, Research Team “Applied Materials and Catalyses” Chemistry Department, Faculty of SciencesMoulay-Ismail UniversityZitoune, MeknesMorocco
  2. 2.Laboratory of Plant Biotechnology and Molecular Biology, Applied Mycology Team, Faculty of SciencesMoulay-Ismail UniversityZitoune, MeknesMorocco

Personalised recommendations