Skip to main content

Advertisement

Log in

Enhanced removal of methylene blue dye from its aqueous solutions using humic acid-functionalized alumina nanoparticles

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Recently, greater emphasis has been laid on the designing of nano-materials to improve the efficiency of treatment processes. Therefore, in the wake of technological improvement, a novel adsorbent humic acid-functionalized alumina (HAFA) nanoparticles were designed and have been tested for their decolorisation potential for methylene blue dye from aqueous solutions. HAFA nanoparticles were synthesized by the precipitation method and the qualitative aspect of the synthesized nanoparticles were explored by using various techniques, namely N2 adsorption–desorption measurements, Fourier transform infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis and zero point charge analysis. The effects of different parameters like pH value, initial contact time and concentration of the adsorbent solution were investigated to optimized the removal of methylene blue. Rate constants determination were explored by employing pseudo-first-order, and pseudo-second-order kinetic models and the latter was found to be the best simulated. Moreover, for gaining insight into the adsorption interaction, sorption data were further interpreted through Weber–Morris and Boyd models. The adsorption equilibrium data were best elucidated by Freundlich’s isotherm model and the maximum adsorption capacity of the HAFA nanoparticles was evaluated as 438.4 mg/g at 323 K. An adsorbent reusability study suggested that HAFA nanoparticles could be efficiently used for up to five cycles without compromising the adsorption capacity. Moreover, column investigation was also conducted, and results suggested that the breakthrough time could be easily enhanced by controlling the column bed height and effluent flow rate. A maximum breakthrough of 23 h was achieved with a column bed height of 7.5 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. G. Prando, Nat. Nanotechnol. 12, 506 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, RSC Adv. 2, 6380 (2012)

    Article  CAS  Google Scholar 

  3. R. Li, L. Zhang, P. Wang, Nanoscale 7, 17167 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. S. Thatai, P. Khurana, J. Boken, S. Prasad, D. Kumar, Microchem. J. 116, 62 (2014)

    Article  CAS  Google Scholar 

  5. S. Lan, N. Guo, L. Liu, X. Wu, L. Li, S. Gan, Appl. Surf. Sci. 283, 1032 (2013)

    Article  CAS  Google Scholar 

  6. S. Lamouri, M. Hamidouche, N. Bouaouadja, H. Belhouchet, V. Garnier, G. Fantozzi, J.F. Trelkat, Boletín de la sociedad española de cerámica y vidrio 56, 47 (2017)

    Article  Google Scholar 

  7. E. Kumar, A. Bhatnagar, U. Kumar, M. Sillanpää, J. Hazard. Mater. 186, 1042 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. A. Bhatnagar, E. Kumar, M. Sillanpää, Chem. Eng. J. 163, 317 (2010)

    Article  CAS  Google Scholar 

  9. A.K. Patra, A. Dutta, A. Bhaumik, J. Hazard. Mater. 201–202, 170 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. L. Qian, M. Ma, D. Cheng, J. Mol. Liq. 197, 295 (2014)

    Article  CAS  Google Scholar 

  11. A. Bhat, G.B. Megeri, C. Thomas, H. Bhargava, C. Jeevitha, S. Chandrashekar, G.M. Madhu, J. Environ. Chem. Eng. 3, 30 (2015)

    Article  CAS  Google Scholar 

  12. A. Afkhami, M.S. Tehrani, H. Bagheri, J. Hazard. Mater. 181, 836 (2010)

    Article  CAS  PubMed  Google Scholar 

  13. J. Li, Y. Shi, Y. Cai, S. Mou, G. Jiang, Chem. Eng. J. 140, 214 (2008)

    Article  CAS  Google Scholar 

  14. J. Zolgharnein, M. Bagtash, T. Shariatmanesh, Spectrochim. Acta Part A 137, 1016 (2015)

    Article  CAS  Google Scholar 

  15. Y. Gan, N. Tian, X. Tian, L. Ma, W. Wang, C. Yang, Z. Zhou, Y. Wang, J. Porous Mater. 22, 147 (2015)

    Article  CAS  Google Scholar 

  16. K. Yang, D. Lin, B. Xing, Langmuir 25, 3571 (2009)

    Article  CAS  PubMed  Google Scholar 

  17. S. Banerjee, R.K. Gautam, A. Jaiswal, M.C. Chattopadhyaya, Y.C. Sharma, RSC Adv. 5, 14425 (2015)

    Article  CAS  Google Scholar 

  18. D.Q. Melo, V.O.S. Neto, J.T. Oliveira, A.L. Barros, E.C.C. Gomes, G.S.C. Raulino, E. Longuinotti, R.F. Nascimento, J. Chem. Eng. Data 58, 798 (2013)

    Article  CAS  Google Scholar 

  19. M.A. Ahmad, N.A.A. Puad, O.S. Bello, Water Resour. Ind. 6, 18 (2014)

    Article  Google Scholar 

  20. Q. Lingling, T. Xu, W. Zhaofeng, P. Xinshan, Int. J. Min. Sci. Technol. 27, 371 (2017)

    Article  CAS  Google Scholar 

  21. M. Tatzber, M. Stemmer, H. Spiegel, C. Katzlberger, G. Haberhauer, A. Mentler, M.H. Gerzabek, J. Plant Nutr. Soil Sci. 170, 522 (2007)

    Article  CAS  Google Scholar 

  22. Y. Matsui, K. Kumada, M. Shiraishi, Soil Sci. Plant Nutr. 30, 13 (1984)

    Article  CAS  Google Scholar 

  23. S. Shen, W.K. Ng, L.S.O. Chia, Y.C. Dong, R.B.H. Tan, Cryst. Growth Des. 12, 4987 (2012)

    Article  CAS  Google Scholar 

  24. T.D. Isfahani, J. Javadpour, A. Khavandi, H.R. Rezaie, M. Goodarzi, Adv. Appl. Ceram. 112, 316 (2013)

    Article  CAS  Google Scholar 

  25. J. Kucerik, D. Kamenarova, D. Valkova, M. Pekar, J. Kislinger, J. Therm. Anal. Calorim. 84, 715 (2006)

    Article  CAS  Google Scholar 

  26. S. Sheshmani, A. Ashori, S. Hasanzadeh, Int. J. Biol. Macromol. 68, 218 (2014)

    Article  CAS  PubMed  Google Scholar 

  27. A. Albert, E.P. Sergeant, Ionization Constants of Acids and Bases. A Laboratory Manual (Wiley, New York, 1962), pp. 69–91

    Google Scholar 

  28. M. Eita, Soft Matter 7, 7424 (2011)

    Article  CAS  Google Scholar 

  29. Y. Zou, X. Wang, Y. Ai, Y. Liu, J. Li, Y. Ji, X. Wang, Environ. Sci. Technol. 50, 3658 (2016)

    Article  CAS  PubMed  Google Scholar 

  30. Y. Zou, X. Wang, Z. Chen, W. Yao, Y. Ai, Y. Liu, T. Hayat, A. Alsaedi, N.S. Alharbi, X. Wang, Environ. Pollut. 219, 107 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. W. Yao, J. Wang, P. Wang, X. Wang, S. Yu, Y. Zou, J. Hou, T. Hayat, A. Alsaedi, X. Wang, Environ. Pollut. 229, 827 (2017)

    Article  CAS  PubMed  Google Scholar 

  32. M. Yao, X. Zhang, L. Lei, J. Chem. Eng. Data 57, 1915 (2012)

    Article  CAS  Google Scholar 

  33. P. Phatai, C.M. Futalan, Desalin. Water Treat. 57, 8884 (2016)

    Article  CAS  Google Scholar 

  34. E.H. Ezechi, S.R.M. Kutty, A. Malakahmad, M.H. Isa, Process Saf. Environ. Protect. 98, 16 (2015)

    Article  CAS  Google Scholar 

  35. S. Lagergren, K. Sven, Vetenskapsakad. Handl. 244, 1 (1898)

    Google Scholar 

  36. Y.S. Ho, Adsorption 10, 151 (2004)

    Article  CAS  Google Scholar 

  37. G. McKay, S.J. Allen, I.F. McConvey, M.S. Otterburn, J. Colloid Interface Sci. 80, 323 (1981)

    Article  CAS  Google Scholar 

  38. W.J. Weber, J.C. Morris, J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89, 31 (1963)

    Google Scholar 

  39. H. Shayesteh, A.R. Kelishami, R. Norouzbeigi, J. Mol. Liq. 221, 1 (2016)

    Article  CAS  Google Scholar 

  40. D. Kumar, J.P. Gaur, Bioresour. Technol. 102, 633 (2011)

    Article  CAS  PubMed  Google Scholar 

  41. G.E. Boyd, A.W. Adamson, L.S. Meyers, J. Am. Chem. Soc. 69, 2836 (1947)

    Article  CAS  PubMed  Google Scholar 

  42. A. Öztürk, E. Malkoc, Appl. Surf. Sci. 299, 105 (2014)

    Article  CAS  Google Scholar 

  43. H.B. Senturk, D. Ozdes, C. Duran, Desalination 252, 81 (2010)

    Article  CAS  Google Scholar 

  44. I. Langmuir, J. Am. Chem. Soc. 38, 2221 (1916)

    Article  CAS  Google Scholar 

  45. H.M.F. Freundlich, J. Phys. Chem. 57, 385 (1906)

    CAS  Google Scholar 

  46. M.M. Dubinin, E.D. Zaverina, L.V. Radushkevich, J. Phys. Chem. 21, 1351 (1947)

    CAS  Google Scholar 

  47. M. Ciopec, C.M. Davidescu, A. Negrea, I. Grozav, L. Lupa, P. Negrea, A. Popa, Chem. Eng. Res. Des. 90, 1660 (2012)

    Article  CAS  Google Scholar 

  48. S. Arrhenius, J. Phys. Chem. 14, 226 (1889)

    Google Scholar 

  49. J. Wang, X. Li, Z. Cai, L. Gu, Fiber Polym. 16, 2384 (2015)

    Article  CAS  Google Scholar 

  50. D. Pathania, S. Sharma, P. Singh, Arab. J. Chem. 10, S1445 (2017)

    Article  CAS  Google Scholar 

  51. W. Song, T. Yang, X. Wang, Y. Sun, Y. Ai, G. Sheng, T. Hayat, X. Wang, Environ. Sci Nano 3, 1318 (2016)

    Article  CAS  Google Scholar 

  52. S. Yu, X. Wang, Y. Ai, X. Tan, T. Hayat, W. Hu, X. Wang, J. Mater. Chem. A 4, 5654 (2016)

    Article  CAS  Google Scholar 

  53. S. Yu, X. Wang, W. Yao, J. Wang, Y. Ji, Y. Ai, A. Alsaedi, T. Hayat, X. Wang, Environ. Sci. Technol. 51, 3278 (2017)

    Article  CAS  PubMed  Google Scholar 

  54. R.D. Fleck Jr., D.J. Kirwan, K.R. Hall, Ind. Eng. Chem. Fundam. 12, 95 (1973)

    Article  CAS  Google Scholar 

  55. K. Hristovski, A. Baumgardner, P. Westerhoff, J. Hazard. Mater. 147, 265 (2007)

    Article  CAS  PubMed  Google Scholar 

  56. E.N. El Qada, S.J. Allen, G.M. Walker, Ind. Eng. Chem. Res. 45, 6044 (2006)

    Article  CAS  Google Scholar 

  57. N. Chen, Z. Zhang, C. Feng, M. Li, R. Chen, N. Sugiura, Desalination 268, 76 (2011)

    Article  CAS  Google Scholar 

  58. J. Fei, J. Zhao, H. Zhang, A. Wang, C. Qin, P. Cai, X. Feng, J. Li, J. Colloid Interfaces Sci. 490, 621 (2017)

    Article  CAS  Google Scholar 

  59. T. Liu, Y. Li, Q. Du, J. Sun, Y. Jiao, G. Yang, Z. Wang, Y. Xia, W. Zhang, K. Wang, H. Zhu, D. Wu, Colloids Surf. B Biointerfaces 90, 197 (2012)

    Article  CAS  PubMed  Google Scholar 

  60. X.Y. Huang, H.T. Bu, G.B. Jiang, M.H. Zeng, Int. J. Biol. Macromol. 49, 643 (2011)

    Article  CAS  PubMed  Google Scholar 

  61. Y. Yao, F. Xu, M. Chen, Z. Xu, Z. Zhu, Bioresour. Technol. 101, 3040 (2010)

    Article  CAS  PubMed  Google Scholar 

  62. E. Haque, J.W. Jun, S.H. Jhung, J. Hazard. Mater. 185, 507 (2011)

    Article  CAS  PubMed  Google Scholar 

  63. J. Zhu, Y. Wang, J. Liu, Y. Zhang, Ind. Eng. Chem. Res. 53, 13711 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author (SB) is thankful to the Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, India, for providing the prestigious Institute Post Doctoral Fellowship. The author would also like to acknowledge Prof. M. C. Chattopadhyaya and Prof. Y. C. Sharma for extending their laboratory facilities in carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushmita Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S. Enhanced removal of methylene blue dye from its aqueous solutions using humic acid-functionalized alumina nanoparticles. Res Chem Intermed 44, 4119–4148 (2018). https://doi.org/10.1007/s11164-018-3359-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3359-3

Keywords

Navigation