Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 7, pp 4119–4148 | Cite as

Enhanced removal of methylene blue dye from its aqueous solutions using humic acid-functionalized alumina nanoparticles

Article
  • 27 Downloads

Abstract

Recently, greater emphasis has been laid on the designing of nano-materials to improve the efficiency of treatment processes. Therefore, in the wake of technological improvement, a novel adsorbent humic acid-functionalized alumina (HAFA) nanoparticles were designed and have been tested for their decolorisation potential for methylene blue dye from aqueous solutions. HAFA nanoparticles were synthesized by the precipitation method and the qualitative aspect of the synthesized nanoparticles were explored by using various techniques, namely N2 adsorption–desorption measurements, Fourier transform infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis and zero point charge analysis. The effects of different parameters like pH value, initial contact time and concentration of the adsorbent solution were investigated to optimized the removal of methylene blue. Rate constants determination were explored by employing pseudo-first-order, and pseudo-second-order kinetic models and the latter was found to be the best simulated. Moreover, for gaining insight into the adsorption interaction, sorption data were further interpreted through Weber–Morris and Boyd models. The adsorption equilibrium data were best elucidated by Freundlich’s isotherm model and the maximum adsorption capacity of the HAFA nanoparticles was evaluated as 438.4 mg/g at 323 K. An adsorbent reusability study suggested that HAFA nanoparticles could be efficiently used for up to five cycles without compromising the adsorption capacity. Moreover, column investigation was also conducted, and results suggested that the breakthrough time could be easily enhanced by controlling the column bed height and effluent flow rate. A maximum breakthrough of 23 h was achieved with a column bed height of 7.5 cm.

Keywords

Alumina nanoparticles Humic acid Methylene blue Adsorption Reusability Column 

Notes

Acknowledgements

The author (SB) is thankful to the Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, India, for providing the prestigious Institute Post Doctoral Fellowship. The author would also like to acknowledge Prof. M. C. Chattopadhyaya and Prof. Y. C. Sharma for extending their laboratory facilities in carrying out this research work.

References

  1. 1.
    G. Prando, Nat. Nanotechnol. 12, 506 (2017)CrossRefGoogle Scholar
  2. 2.
    V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, RSC Adv. 2, 6380 (2012)CrossRefGoogle Scholar
  3. 3.
    R. Li, L. Zhang, P. Wang, Nanoscale 7, 17167 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Thatai, P. Khurana, J. Boken, S. Prasad, D. Kumar, Microchem. J. 116, 62 (2014)CrossRefGoogle Scholar
  5. 5.
    S. Lan, N. Guo, L. Liu, X. Wu, L. Li, S. Gan, Appl. Surf. Sci. 283, 1032 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Lamouri, M. Hamidouche, N. Bouaouadja, H. Belhouchet, V. Garnier, G. Fantozzi, J.F. Trelkat, Boletín de la sociedad española de cerámica y vidrio 56, 47 (2017)CrossRefGoogle Scholar
  7. 7.
    E. Kumar, A. Bhatnagar, U. Kumar, M. Sillanpää, J. Hazard. Mater. 186, 1042 (2011)CrossRefGoogle Scholar
  8. 8.
    A. Bhatnagar, E. Kumar, M. Sillanpää, Chem. Eng. J. 163, 317 (2010)CrossRefGoogle Scholar
  9. 9.
    A.K. Patra, A. Dutta, A. Bhaumik, J. Hazard. Mater. 201–202, 170 (2012)CrossRefGoogle Scholar
  10. 10.
    L. Qian, M. Ma, D. Cheng, J. Mol. Liq. 197, 295 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Bhat, G.B. Megeri, C. Thomas, H. Bhargava, C. Jeevitha, S. Chandrashekar, G.M. Madhu, J. Environ. Chem. Eng. 3, 30 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Afkhami, M.S. Tehrani, H. Bagheri, J. Hazard. Mater. 181, 836 (2010)CrossRefGoogle Scholar
  13. 13.
    J. Li, Y. Shi, Y. Cai, S. Mou, G. Jiang, Chem. Eng. J. 140, 214 (2008)CrossRefGoogle Scholar
  14. 14.
    J. Zolgharnein, M. Bagtash, T. Shariatmanesh, Spectrochim. Acta Part A 137, 1016 (2015)CrossRefGoogle Scholar
  15. 15.
    Y. Gan, N. Tian, X. Tian, L. Ma, W. Wang, C. Yang, Z. Zhou, Y. Wang, J. Porous Mater. 22, 147 (2015)CrossRefGoogle Scholar
  16. 16.
    K. Yang, D. Lin, B. Xing, Langmuir 25, 3571 (2009)CrossRefGoogle Scholar
  17. 17.
    S. Banerjee, R.K. Gautam, A. Jaiswal, M.C. Chattopadhyaya, Y.C. Sharma, RSC Adv. 5, 14425 (2015)CrossRefGoogle Scholar
  18. 18.
    D.Q. Melo, V.O.S. Neto, J.T. Oliveira, A.L. Barros, E.C.C. Gomes, G.S.C. Raulino, E. Longuinotti, R.F. Nascimento, J. Chem. Eng. Data 58, 798 (2013)CrossRefGoogle Scholar
  19. 19.
    M.A. Ahmad, N.A.A. Puad, O.S. Bello, Water Resour. Ind. 6, 18 (2014)CrossRefGoogle Scholar
  20. 20.
    Q. Lingling, T. Xu, W. Zhaofeng, P. Xinshan, Int. J. Min. Sci. Technol. 27, 371 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Tatzber, M. Stemmer, H. Spiegel, C. Katzlberger, G. Haberhauer, A. Mentler, M.H. Gerzabek, J. Plant Nutr. Soil Sci. 170, 522 (2007)CrossRefGoogle Scholar
  22. 22.
    Y. Matsui, K. Kumada, M. Shiraishi, Soil Sci. Plant Nutr. 30, 13 (1984)CrossRefGoogle Scholar
  23. 23.
    S. Shen, W.K. Ng, L.S.O. Chia, Y.C. Dong, R.B.H. Tan, Cryst. Growth Des. 12, 4987 (2012)CrossRefGoogle Scholar
  24. 24.
    T.D. Isfahani, J. Javadpour, A. Khavandi, H.R. Rezaie, M. Goodarzi, Adv. Appl. Ceram. 112, 316 (2013)CrossRefGoogle Scholar
  25. 25.
    J. Kucerik, D. Kamenarova, D. Valkova, M. Pekar, J. Kislinger, J. Therm. Anal. Calorim. 84, 715 (2006)CrossRefGoogle Scholar
  26. 26.
    S. Sheshmani, A. Ashori, S. Hasanzadeh, Int. J. Biol. Macromol. 68, 218 (2014)CrossRefGoogle Scholar
  27. 27.
    A. Albert, E.P. Sergeant, Ionization Constants of Acids and Bases. A Laboratory Manual (Wiley, New York, 1962), pp. 69–91Google Scholar
  28. 28.
    M. Eita, Soft Matter 7, 7424 (2011)CrossRefGoogle Scholar
  29. 29.
    Y. Zou, X. Wang, Y. Ai, Y. Liu, J. Li, Y. Ji, X. Wang, Environ. Sci. Technol. 50, 3658 (2016)CrossRefGoogle Scholar
  30. 30.
    Y. Zou, X. Wang, Z. Chen, W. Yao, Y. Ai, Y. Liu, T. Hayat, A. Alsaedi, N.S. Alharbi, X. Wang, Environ. Pollut. 219, 107 (2016)CrossRefGoogle Scholar
  31. 31.
    W. Yao, J. Wang, P. Wang, X. Wang, S. Yu, Y. Zou, J. Hou, T. Hayat, A. Alsaedi, X. Wang, Environ. Pollut. 229, 827 (2017)CrossRefGoogle Scholar
  32. 32.
    M. Yao, X. Zhang, L. Lei, J. Chem. Eng. Data 57, 1915 (2012)CrossRefGoogle Scholar
  33. 33.
    P. Phatai, C.M. Futalan, Desalin. Water Treat. 57, 8884 (2016)CrossRefGoogle Scholar
  34. 34.
    E.H. Ezechi, S.R.M. Kutty, A. Malakahmad, M.H. Isa, Process Saf. Environ. Protect. 98, 16 (2015)CrossRefGoogle Scholar
  35. 35.
    S. Lagergren, K. Sven, Vetenskapsakad. Handl. 244, 1 (1898)Google Scholar
  36. 36.
    Y.S. Ho, Adsorption 10, 151 (2004)CrossRefGoogle Scholar
  37. 37.
    G. McKay, S.J. Allen, I.F. McConvey, M.S. Otterburn, J. Colloid Interface Sci. 80, 323 (1981)CrossRefGoogle Scholar
  38. 38.
    W.J. Weber, J.C. Morris, J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89, 31 (1963)Google Scholar
  39. 39.
    H. Shayesteh, A.R. Kelishami, R. Norouzbeigi, J. Mol. Liq. 221, 1 (2016)CrossRefGoogle Scholar
  40. 40.
    D. Kumar, J.P. Gaur, Bioresour. Technol. 102, 633 (2011)CrossRefGoogle Scholar
  41. 41.
    G.E. Boyd, A.W. Adamson, L.S. Meyers, J. Am. Chem. Soc. 69, 2836 (1947)CrossRefGoogle Scholar
  42. 42.
    A. Öztürk, E. Malkoc, Appl. Surf. Sci. 299, 105 (2014)CrossRefGoogle Scholar
  43. 43.
    H.B. Senturk, D. Ozdes, C. Duran, Desalination 252, 81 (2010)CrossRefGoogle Scholar
  44. 44.
    I. Langmuir, J. Am. Chem. Soc. 38, 2221 (1916)CrossRefGoogle Scholar
  45. 45.
    H.M.F. Freundlich, J. Phys. Chem. 57, 385 (1906)Google Scholar
  46. 46.
    M.M. Dubinin, E.D. Zaverina, L.V. Radushkevich, J. Phys. Chem. 21, 1351 (1947)Google Scholar
  47. 47.
    M. Ciopec, C.M. Davidescu, A. Negrea, I. Grozav, L. Lupa, P. Negrea, A. Popa, Chem. Eng. Res. Des. 90, 1660 (2012)CrossRefGoogle Scholar
  48. 48.
    S. Arrhenius, J. Phys. Chem. 14, 226 (1889)Google Scholar
  49. 49.
    J. Wang, X. Li, Z. Cai, L. Gu, Fiber Polym. 16, 2384 (2015)CrossRefGoogle Scholar
  50. 50.
    D. Pathania, S. Sharma, P. Singh, Arab. J. Chem. 10, S1445 (2017)CrossRefGoogle Scholar
  51. 51.
    W. Song, T. Yang, X. Wang, Y. Sun, Y. Ai, G. Sheng, T. Hayat, X. Wang, Environ. Sci Nano 3, 1318 (2016)CrossRefGoogle Scholar
  52. 52.
    S. Yu, X. Wang, Y. Ai, X. Tan, T. Hayat, W. Hu, X. Wang, J. Mater. Chem. A 4, 5654 (2016)CrossRefGoogle Scholar
  53. 53.
    S. Yu, X. Wang, W. Yao, J. Wang, Y. Ji, Y. Ai, A. Alsaedi, T. Hayat, X. Wang, Environ. Sci. Technol. 51, 3278 (2017)CrossRefGoogle Scholar
  54. 54.
    R.D. Fleck Jr., D.J. Kirwan, K.R. Hall, Ind. Eng. Chem. Fundam. 12, 95 (1973)CrossRefGoogle Scholar
  55. 55.
    K. Hristovski, A. Baumgardner, P. Westerhoff, J. Hazard. Mater. 147, 265 (2007)CrossRefGoogle Scholar
  56. 56.
    E.N. El Qada, S.J. Allen, G.M. Walker, Ind. Eng. Chem. Res. 45, 6044 (2006)CrossRefGoogle Scholar
  57. 57.
    N. Chen, Z. Zhang, C. Feng, M. Li, R. Chen, N. Sugiura, Desalination 268, 76 (2011)CrossRefGoogle Scholar
  58. 58.
    J. Fei, J. Zhao, H. Zhang, A. Wang, C. Qin, P. Cai, X. Feng, J. Li, J. Colloid Interfaces Sci. 490, 621 (2017)CrossRefGoogle Scholar
  59. 59.
    T. Liu, Y. Li, Q. Du, J. Sun, Y. Jiao, G. Yang, Z. Wang, Y. Xia, W. Zhang, K. Wang, H. Zhu, D. Wu, Colloids Surf. B Biointerfaces 90, 197 (2012)CrossRefGoogle Scholar
  60. 60.
    X.Y. Huang, H.T. Bu, G.B. Jiang, M.H. Zeng, Int. J. Biol. Macromol. 49, 643 (2011)CrossRefGoogle Scholar
  61. 61.
    Y. Yao, F. Xu, M. Chen, Z. Xu, Z. Zhu, Bioresour. Technol. 101, 3040 (2010)CrossRefGoogle Scholar
  62. 62.
    E. Haque, J.W. Jun, S.H. Jhung, J. Hazard. Mater. 185, 507 (2011)CrossRefGoogle Scholar
  63. 63.
    J. Zhu, Y. Wang, J. Liu, Y. Zhang, Ind. Eng. Chem. Res. 53, 13711 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of AllahabadAllahabadIndia
  2. 2.Department of Chemistry, Indian Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations