Research on Chemical Intermediates

, Volume 44, Issue 7, pp 4103–4117 | Cite as

Ferric (hydr)oxide/mesoporous carbon composites as Fenton-like catalysts for degradation of phenol

  • Meng Ren
  • Xufang Qian
  • Mengyuan Fang
  • Dongting Yue
  • Yixin Zhao


Ferric (hydr)oxide (Fhy) is the most widespread iron compound in natural environments which participates in the photochemical process and production of reactive oxygen species in soil and sediment. Three typical Fhy/mesoporous carbon (Fhy/MC) composites in which Fhy nanoparticles (NPs), nanorods (NRs) and/microrods (MRs) crystallized within and/or attached on MC materials were prepared by a hydrothermal process at 70 °C. We explored the performance of Fenton-like oxidation of phenol and mineralization in the presence of H2O2 at a near-neutral pH value (pH = 5). The results showed that Fhy-NP/MC composite in which Fhy NPs were encapsulated in MC frameworks showed the highest catalytic performance due to the plentiful active surface available in comparison with the other two Fhy/MC composites containing larger Fhy NRs or MRs. The recycling test showed Fhy-NP/MC composite retained the high catalytic activity after 5 runs. Visible light irradiation can obviously promote the phenol oxidation performance and the decomposition of H2O2 due to the increased production amount of HO· than that in dark conditions. Hydroxyl radical measurement also revealed that the synergistic effect between Fhy and MC.

Graphical Abstract


Ferric (hydr)oxide Mesoporous carbon Heterogenous Fenton Composite materials Phenol 



This work is supported by the National Natural Science Foundation of China (21507083, 21777097), Shanghai Government (15PJ1404000), and Key Laboratory of Resource Chemistry, Ministry of Education.

Supplementary material

11164_2018_3358_MOESM1_ESM.docx (422 kb)
Supplementary material 1 (DOCX 417 kb)


  1. 1.
    F. Ay, F. Kargi, J. Hazard. Mater. 179, 1 (2010)CrossRefGoogle Scholar
  2. 2.
    A. Dirany, I. Sires, N. Oturan, A. Ozcan, M.A. Oturan, Environ. Sci. Technol. 46, 7 (2012)CrossRefGoogle Scholar
  3. 3.
    C. Sirtori, A. Zapata, I. Oller, W. Gernjak, A. Agueera, S. Malato, Water Res. 43, 3 (2009)CrossRefGoogle Scholar
  4. 4.
    E. Neyens, J. Baeyens, J. Hazard. Mater. 98, 1 (2003)CrossRefGoogle Scholar
  5. 5.
    X. Hou, X. Huang, F. Jia, Z. Ai, J. Zhao, L. Zhang, Environ. Sci. Technol. 51, 9 (2017)Google Scholar
  6. 6.
    A. Dhakshinamoorthy, S. Navalon, M. Alvaro, H. Garcia, Chemsuschem 5, 1 (2012)CrossRefGoogle Scholar
  7. 7.
    S. Navalon, M. Alvaro, H. Garcia, Appl. Catal. B: Environ. 99, 1 (2010)CrossRefGoogle Scholar
  8. 8.
    W. Song, M. Cheng, J. Ma, W. Ma, C. Chen, J. Zhao, Environ. Sci. Technol. 40, 15 (2006)Google Scholar
  9. 9.
    C. Cai, H. Zhang, X. Zhong, L.W. Hou, J. Harzard. Mater. 283, 70 (2015)CrossRefGoogle Scholar
  10. 10.
    Y. Wang, H. Zhao, G. Zhao, Appl. Catal. B Environ. 164, 396 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Chemsuschem 4, 12 (2011)Google Scholar
  12. 12.
    L. Zhou, Y. Shao, J. Liu, Z. Ye, H. Zhang, J. Ma, Y. Jia, W. Gao, Y. Li, A.C.S. Appl, Mater. Interfaces 6, 10 (2014)Google Scholar
  13. 13.
    A.F. Dickens, Y. Gelinas, C.A. Masiello, S. Wakeham, J.I. Hedges, Nature 427, 6972 (2004)CrossRefGoogle Scholar
  14. 14.
    M. Fayazi, M. Ghanei-Motlagh, M.A. Taher, Mat. Sci. Semicond. Proc. 40, 35 (2015)CrossRefGoogle Scholar
  15. 15.
    F. Lucking, H. Koser, M. Jank, A. Ritter, Water Res. 32, 9 (1998)CrossRefGoogle Scholar
  16. 16.
    M. Kimura, I. Miyamoto, Bull. Chem. Soc. Jpn. 67, 9 (1994)Google Scholar
  17. 17.
    G. Fang, J. Gao, C. Liu, D.D. Dionysiou, Y. Wang, D. Zhou, Environ. Sci. Technol. 48, 3 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Qin, L. Zhang, T. An, A.C.S. Appl, Mater. Interfaces 9, 20 (2017)Google Scholar
  19. 19.
    Y. Liu, X. Liu, Y. Zhao, D.D. Dionysiou, Appl. Catal. B Environ. 213, 15 (2017)Google Scholar
  20. 20.
    X. Qian, M. Ren, Y. Zhu, D. Yue, Y. Han, J. Jia, Y. Zhao, Environ. Sci. Technol. 51, 7 (2017)CrossRefGoogle Scholar
  21. 21.
    Y. Wang, J. Fang, J.C. Crittenden, C. Shen, J. Hazard. Mater. 329, 5 (2017)Google Scholar
  22. 22.
    Y. Wang, M. Liang, J. Fang, J. Fu, X. Chen, Chemosphere 182, 468 (2017)CrossRefPubMedGoogle Scholar
  23. 23.
    M. Fayazi, M.A. Taher, D. Afzali, A. Mostafavi, J. Mol. Liq. 216, 781 (2016)CrossRefGoogle Scholar
  24. 24.
    N.A. Zubir, C. Yacou, J. Motuzas, X. Zhang, J.C.D. da Costa, Sci. Rep. 4, 4594 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    L. Krumina, G. Lyngsie, A. Tunlid, P. Persson, Environ. Sci. Technol. 51, 16 (2017)CrossRefGoogle Scholar
  26. 26.
    A.K. Patra, D. Kim, ACS Sustain. Chem. Eng. 5, 2 (2017)Google Scholar
  27. 27.
    B. Wang, H. Wu, L. Yu, R. Xu, T.T. Lim, X.W. Lou, Adv. Mater. 24, 8 (2012)Google Scholar
  28. 28.
    Y. Li, Y. Cao, D. Jia, CrystEngComm 18, 43 (2016)Google Scholar
  29. 29.
    X.S. Lv, Y. Qiu, Z.Y. Wang, G.M. Jiang, Y.T. Chen, X.H. Xu, R.H. Hurt, Environ. Sci. NANO 3, 5 (2016)CrossRefGoogle Scholar
  30. 30.
    Y. Zhang, Q. Cheng, M. Zheng, X. Liu, K. Wu, J. Hazard. Mater. 307, 15 (2016)CrossRefGoogle Scholar
  31. 31.
    L. Liu, L. Yang, H. Liang, H. Cong, J. Jiang, S. Yu, ACS Nano 7, 2 (2013)Google Scholar
  32. 32.
    Y.L. Li, Y.Y. Bian, H.X. Qin, Y.X. Zhang, Z.F. Bian, Appl. Catal. B Environ. 206, 293 (2017)CrossRefGoogle Scholar
  33. 33.
    R. Liu, Y. Shi, Y. Wan, Y. Meng, F. Zhang, D. Gu, Z. Chen, B. Tu, D. Zhao, J. Am. Chem. Soc. 128, 35 (2006)Google Scholar
  34. 34.
    Z. Wu, P.A. Webley, D. Zhao, Langmuir 26, 12 (2010)Google Scholar
  35. 35.
    L. Lyu, L.L. Zhang, Q.Y. Wang, Y.L. Nie, C. Hu, Environ. Sci. Technol. 49, 14 (2015)CrossRefGoogle Scholar
  36. 36.
    X. Yang, X. Xu, J. Xu, Y. Han, J. Am. Chem. Soc. 135, 43 (2013)Google Scholar
  37. 37.
    J.F. Banfield, S.A. Welch, H.Z. Zhang, T.T. Ebert, R.L. Penn, Science 289, 5480 (2000)CrossRefGoogle Scholar
  38. 38.
    R.L. Penn, J.J. Erbs, D.M. Gulliver, J. Cryst. Growth 293, 1 (2006)CrossRefGoogle Scholar
  39. 39.
    J. Liu, M. Zheng, X. Shi, H. Zeng, H. Xia, Adv. Funct. Mater. 26, 6 (2016)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Environmental Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations