Research on Chemical Intermediates

, Volume 44, Issue 7, pp 3947–3958 | Cite as

Ni–Mg co-doped ZnO nanoparticles as a novel catalyst for hydroxylation of benzene to phenol

  • Raziyeh Meimani
  • Zahra Aghajani
  • Gholam Reza Najafi


Mg and Ni were introduced as the novel co-doping materials for synthesizing Mg and Ni co-doping ZnO nanoparticles (NPs) through the simple wet chemical method. Photocatalyst properties of Mg and Ni co-doping ZnO NPs were studied by hydroxylation of benzene to phenol at room temperature. Furthermore, the doped Mg and Ni cause the hydroxylation capability of ZnO to be enhanced which can be attributed to the presence of Mg and Ni on the ZnO NPs which greatly increases absorption in under the ultraviolet (UV) light range enabled by the surface plasmon resonance effect from Mg and Ni. In addition, an attempt was made to investigate the effects of several parameters such as hydroxylation reaction time, solvent, and concentration of H2O2 and photocatalyst, and UV irradiation on the hydroxylation yield. Mg and Ni co-doping ZnO NPs showed significant hydroxylation after two recyclings, resulting in 85 and 77% in the first and second recycling processes, respectively.


Benzene hydroxylation Doped zinc oxide Hydrogen peroxide Photocatalysis 



The authors acknowledge the kind financial supports of the Research Council of Qom Branch, Islamic Azad University, Qom, Iran and Padideh Noavaran Nano Bonyan Company, Iran.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    H.W. Kim, D.S. Kwak, Y.J. Kwon, C. Lee, J.H. Jung, Met. Mater. Int. 19, 1123 (2013)CrossRefGoogle Scholar
  2. 2.
    A. Javidan, M. Ramezani, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, J. Mater. Sci.: Mater. Electron. 26, 3813 (2015)Google Scholar
  3. 3.
    A. Sobhani-Nasab, M. Maddahfar, S.M. Hosseinpour-Mashkani, J. Mol. Liq. 216, 1 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Moradiganjeh, Z. Aghajani, J. Mater. Sci.: Mater. Electron. 27, 5948 (2016)Google Scholar
  5. 5.
    A. Javidan, S. Rafizadeh, S.M. Hosseinpour-Mashkani, Mater. Sci. Semicond. Process. 27, 468 (2014)CrossRefGoogle Scholar
  6. 6.
    Y. Liu, H. Song, Q. Zhang, Res. Chem. Intermed. 38, 651 (2012)CrossRefGoogle Scholar
  7. 7.
    F. Gobo, T. Goto, T. Long, S. Yin, T. Sato, Res. Chem. Intermed. 37, 211 (2011)CrossRefGoogle Scholar
  8. 8.
    W.M. Li, P.G. Yin, L. Guo, Res. Chem. Intermed. 37, 125 (2011)CrossRefGoogle Scholar
  9. 9.
    D. Jeong, K. Kim, S. Park, Y. Kim, S. Kim, S. Kim, Res. Chem. Intermed. 40, 97 (2014)CrossRefGoogle Scholar
  10. 10.
    A. Phuruangrat, S. Mad-ahin, O. Yayapao, S. Thongtem, T. Thongtem, Res. Chem. Intermed. 41, 9757 (2015)CrossRefGoogle Scholar
  11. 11.
    Z. Barzgari, A. Ghazizadeh, S.Z. Askari, Res. Chem. Intermed. 42, 4303 (2016)CrossRefGoogle Scholar
  12. 12.
    K. Namratha, S. Suresha, M.B. Nayan, K. Byrappa, Res. Chem. Intermed. 37, 531 (2011)CrossRefGoogle Scholar
  13. 13.
    U.P.S. Gahlaut, V. Kumar, R.K. Pandey, Y.C. Goswami, Opt. Int. J. Light Electron Opt. 127, 4292 (2016)CrossRefGoogle Scholar
  14. 14.
    S. Benramache, A. Arif, O. Belahssen, A. Guettaf, Opt. Int. J. Light Electron Opt. 125, 5776 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Tani, T. Sakamoto, S. Mita, S. Sakaguchi, Y. Ishii, Angew. Chem. Int. Ed. 44, 2586 (2005)CrossRefGoogle Scholar
  16. 16.
    M. Tlili, N. Xia, F. Monnier, M. Taillefer, Angew. Chem. Int. Ed. 48, 8725 (2009)CrossRefGoogle Scholar
  17. 17.
    Y. Guo, X. Zhang, H. Zou, H. Liu, J. Wang, K.L. Yeung, Chem. Commun. 39, 5898 (2009)CrossRefGoogle Scholar
  18. 18.
    R. Bal, M. Tada, T. Sasaki, Y. Iwasawa, Angew. Chem. Int. Ed. 45, 448 (2006)CrossRefGoogle Scholar
  19. 19.
    S. Kim, J. Yeo, W. Choi, Appl. Catal. B 84, 148 (2008)CrossRefGoogle Scholar
  20. 20.
    Y. Park, W. Kim, H. Park, T. Tachikawa, T. Majima, W. Choi, Appl. Catal. B 91, 355 (2009)CrossRefGoogle Scholar
  21. 21.
    Y. Wu, M. Xing, J. Zhang, F. Chen, Appl. Catal. B 97, 182 (2010)CrossRefGoogle Scholar
  22. 22.
    P. Calza, V.A. Sakkas, C. Medana, M. Azharul Islam, E. Raso, K. Panagiotou, T. Albanis, Appl. Catal. B 99, 314 (2010)CrossRefGoogle Scholar
  23. 23.
    H. Liu, W. Feng, C.W. Kee, Y. Zhao, D. Leow, Y. Pan, C.H. Tan, Green Chem. 12, 953 (2010)CrossRefGoogle Scholar
  24. 24.
    S.S. Acharyya, S. Ghosh, R. Tiwari, C. Pendem, T. Sasaki, R. Bal, ACS Catal. 5, 2850 (2015)CrossRefGoogle Scholar
  25. 25.
    M. Yamada, K.D. Karlin, S. Fukuzumi, Chem. Sci. 7, 2856 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    X. Wang, B. Meng, X. Tan, X. Zhang, S. Zhuang, L. Liu, Ind. Eng. Chem. Res. 53, 5636 (2014)CrossRefGoogle Scholar
  27. 27.
    S.M. Hosseinpour-Mashkani, M. Ramezani, Mat. Lett. 130, 259 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Ramezani, S.M. Hosseinpour-Mashkani, J. Electron. Mater. 46, 1371 (2017)CrossRefGoogle Scholar
  29. 29.
    H. Yuhai, M. Gonghaito, L. Huanhkeming, P. Liue, Z. Kangjie, W. Wang, Bull. Mater. Sci. 36, 367 (2013)CrossRefGoogle Scholar
  30. 30.
    G. Zhang, J. Ya, J. Shim, J. Lee, W. Choa, Appl. Catal. B 102, 132 (2011)CrossRefGoogle Scholar
  31. 31.
    M. Forouzani, H.R. Mardani, M. Ziari, A. Malekzadeh, P. Biparva, Chem. Eng. J. 275, 220 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Qom BranchIslamic Azad UniversityQomIran

Personalised recommendations