Cobalt porphyrin supported on N and P co-doped graphene quantum dots/graphene as an efficient photocatalyst for aerobic oxidation of alcohols under visible-light irradiation
- 31 Downloads
Abstract
The research and development of the new heterogeneous photocatalysts for selective organic transformations under visible-light irradiation and environmentally friendly conditions is still considered as one of the hot topics in the fine chemical industry. Here, we report the synthesis of cobalt porphyrin-supported nitrogen and phosphorus co-doped graphene quantum dots/graphene (CoPP@N, P: GQD/G) and their impressive performance as efficient, recyclable, and noble metal free heterogeneous photocatalysts in the aerobic oxidation reaction of alcohols under visible-light irradiation. In terms of catalytic activity, these catalysts afford much higher conversion (ca. 92%) and selectivity (ca. 86%) than most reported photocatalysts under the same reaction conditions. This work notes the considerable potential of CoPP@N, P: GQD/G photocatalysts in the aerobic oxidation reaction owning to high activity and selectivity, short reaction time, reusability and easy separation under ambient and green conditions.
Graphical Abstract
Keywords
Photocatalysis Graphene quantum dots Selective aerobic oxidation Biomimetic photocatalystNotes
Acknowledgements
The financial support provided by the Iran National Science Foundation (INSF) is gratefully acknowledged.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
References
- 1.X. Lang, X. Chen, J. Zhao, Chem. Soc. Rev. 43, 1 (2014)CrossRefGoogle Scholar
- 2.C.-J. Li, L. Chen, Chem. Soc. Rev. 35, 1 (2006)CrossRefGoogle Scholar
- 3.G. Palmisano, S. Yurdakal, V. Augugliaro, V. Loddo, L. Palmisano, Adv. Synth. Catal. 349, 6 (2007)Google Scholar
- 4.X. Wang, G. Sun, N. Li, P. Chen, Chem. Soc. Rev. 45, 8 (2016)Google Scholar
- 5.G. Palmisano, V. Augugliaro, M. Pagliaro, L. Palmisano, Chem. Commun. 33, 3425 (2007)CrossRefGoogle Scholar
- 6.J.C. Colmenares, R. Luque, Chem. Soc. Rev. 43, 3 (2014)CrossRefGoogle Scholar
- 7.M.L. Marin, L. Santos-Juanes, A. Arques, A.M. Amat, M.A. Miranda, Chem. Rev. 112, 3 (2011)Google Scholar
- 8.J. Kou, C. Lu, J. Wang, Y. Chen, Z. Xu, R.S. Varma, Chem. Rev. 117, 3 (2017)CrossRefGoogle Scholar
- 9.N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, Y.-J. Xu, Chem. Rev. 115, 18 (2015)Google Scholar
- 10.M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S. Dunlop, J.W. Hamilton, J.A. Byrne, K. O’shea, Appl. Catal. B 125, 331 (2012)CrossRefGoogle Scholar
- 11.M. Zhang, C. Chen, W. Ma, J. Zhao, Angew. Chem. 120, 50 (2008)Google Scholar
- 12.T. Mlodnicka, J. Mol. Catal. 36, 205 (1986)CrossRefGoogle Scholar
- 13.K.M. Smith, J.E. Falk, Porphyrins and Metalloporphyrins (Elsevier, Amsterdam, 1975)Google Scholar
- 14.Z.J. LI, X. Zhen-Qiang Chinese, J. Org. Chem. 25, 1 (2005)Google Scholar
- 15.P. Böhm, H. Gröger, ChemCatChem 7, 1 (2015)CrossRefGoogle Scholar
- 16.V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu, Macromol. Mater. Eng. 296, 10 (2011)CrossRefGoogle Scholar
- 17.G.S. Machado, K.A.D. de Freitas Castro, F. Wypych, S. Nakagaki, J. Mol. Catal. A: Chem. 283, 1 (2008)CrossRefGoogle Scholar
- 18.V. Mirkhani, S. Tangestaninejad, M. Moghadam, Z. Karimian, Bioorg. Med. Chem. Lett. 13, 20 (2003)CrossRefGoogle Scholar
- 19.M. Nandi, P. Roy, H. Uyama, A. Bhaumik, Dalton Trans. 40, 46 (2011)CrossRefGoogle Scholar
- 20.M. Mahyari, M.S. Laeini, A. Shaabani, Chem. Commun. 50, 58 (2014)CrossRefGoogle Scholar
- 21.M. Mahyari, A. Shaabani, Appl. Catal. A 469, 524 (2014)CrossRefGoogle Scholar
- 22.M. Bacon, S.J. Bradley, T. Nann, Part. Part. Syst. Charact. 31, 4 (2014)CrossRefGoogle Scholar
- 23.A.D. Güçlü, P. Potasz, M. Korkusinski, P. Hawrylak, Graphene Quantum Dots (Springer, Berlin, 2014)CrossRefGoogle Scholar
- 24.J. Shen, Y. Zhu, X. Yang, C. Li, Chem. Commun. 48, 31 (2012)Google Scholar
- 25.V. Gupta, N. Chaudhary, R. Srivastava, G.D. Sharma, R. Bhardwaj, S. Chand, J. Am. Chem. Soc. 133, 26 (2011)CrossRefGoogle Scholar
- 26.B.-X. Zhang, H. Gao, X.-L. Li, New J. Chem. 38, 9 (2014)Google Scholar
- 27.D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie, Z. Sun, Nanoscale 5, 24 (2013)Google Scholar
- 28.Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, L. Qu, J. Am. Chem. Soc. 134, 1 (2011)Google Scholar
- 29.P.A. Denis, R. Faccio, A.W. Mombru, ChemPhysChem 10, 4 (2009)CrossRefGoogle Scholar
- 30.Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Carbon 50, 12 (2012)Google Scholar
- 31.H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta, A. Okamoto, Adv. Mater. 24, 39 (2012)CrossRefGoogle Scholar
- 32.C. Li, J. Zhou, W. Gao, J. Zhao, J. Liu, Y. Zhao, M. Wei, D.G. Evans, X. Duan, J. Mater. Chem. A 1, 5370 (2013)CrossRefGoogle Scholar
- 33.M. Mahyari, Y. Bide, J.N. Gavgani, Appl. Catal. A 517, 100 (2016)CrossRefGoogle Scholar
- 34.A. Ananthanarayanan, Y. Wang, P. Routh, M.A. Sk, A. Than, M. Lin, J. Zhang, J. Chen, H. Sun, P. Chen, Nanoscale 7, 17 (2015)CrossRefGoogle Scholar
- 35.J.N. Gavgani, H. Adelnia, D. Zaarei, M.M. Gudarzi, RSC Adv. 6, 33 (2016)CrossRefGoogle Scholar
- 36.H. Fei, R. Ye, G. Ye, Y. Gong, Z. Peng, X. Fan, E.L. Samuel, P.M. Ajayan, J.M. Tour, ACS NANO 8, 10 (2014)Google Scholar
- 37.M. SadegháLaeini, Chem. Commun. 50, 58 (2014)CrossRefGoogle Scholar
- 38.J.N. Gavgani, A. Hasani, M. Nouri, M. Mahyari, A. Salehi, Sens. Actuators B: Chem. 229, 239 (2016)CrossRefGoogle Scholar
- 39.G.-J. ten Brink, I.W. Arends, R.A. Sheldon, Science 287, 5458 (2000)CrossRefGoogle Scholar
- 40.M. Besson, P. Gallezot, Catal. Today 57, 1 (2000)CrossRefGoogle Scholar
- 41.N. Aratani, A. Osuka, Macromol Rapid Commun. 22, 10 (2001)CrossRefGoogle Scholar
- 42.C.J. Medforth, Z. Wang, K.E. Martin, Y. Song, J.L. Jacobsen, J.A. Shelnutt, Chem. Commun. 47, 7261 (2009)CrossRefGoogle Scholar
- 43.M. Hajimohammadi, N. Safari, H. Mofakham, F. Deyhimi, Green Chem. 13, 4 (2011)CrossRefGoogle Scholar
- 44.M. Calvete, G.Y. Yang, M. Hanack, Synth. Met. 141, 3 (2004)CrossRefGoogle Scholar
- 45.W.-J. Sun, J. Li, G.-P. Yao, F.-X. Zhang, J.-L. Wang, Appl. Surf. Sci. 258, 2 (2011)CrossRefGoogle Scholar
- 46.M. Wang, Z. Fang, K. Zhang, J. Fang, F. Qin, Z. Zhang, J. Li, Y. Liu, Y. Lai, Nanoscale 8, 22 (2016)CrossRefGoogle Scholar
- 47.B. Shi, Y. Su, L. Zhang, M. Huang, R. Liu, S. Zhao, ACS Appl. Mater. Interfaces. 8, 17 (2016)Google Scholar
- 48.X. Sun, C. Brückner, Y. Lei, Nanoscale 7, 41 (2015)Google Scholar
- 49.W. Tu, J. Lei, S. Zhang, H. Ju, Chem.–A Eur. J. 16, 35 (2010)Google Scholar
- 50.J. Chen, C.P. Collier, J. Phys. Chem. B 109, 16 (2005)Google Scholar
- 51.X. Qiao, S. Liao, C. You, R. Chen, Catalysts 5, 2 (2015)CrossRefGoogle Scholar
- 52.Y. Wang, B. Zhang, M. Xu, X. He, RSC Adv. 5, 105 (2015)Google Scholar
- 53.D. Huang, J. Lu, S. Li, Y. Luo, C. Zhao, B. Hu, M. Wang, Y. Shen, Langmuir 30, 23 (2014)Google Scholar
- 54.Y. Zhang, Z.-R. Tang, X. Fu, Y.-J. Xu, ACS Nano 5, 9 (2011)Google Scholar
- 55.S. Farhadi, M. Zaidi, Appl. Catal. A 354, 1 (2009)CrossRefGoogle Scholar
- 56.F. Su, S.C. Mathew, G. Lipner, X. Fu, M. Antonietti, S. Blechert, X. Wang, J. Am. Chem. Soc. 132, 46 (2010)CrossRefGoogle Scholar
- 57.S. Furukawa, A. Tamura, T. Shishido, K. Teramura, T. Tanaka, Appl. Catal. B 110, 216 (2011)CrossRefGoogle Scholar
- 58.W. Feng, G. Wu, L. Li, N. Guan, Green Chem. 13, 11 (2011)CrossRefGoogle Scholar
- 59.Q. Wang, M. Zhang, C. Chen, W. Ma, J. Zhao, Angew. Chem. Int. Ed. 49, 43 (2010)Google Scholar
- 60.L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Dalton Trans. 42, 37 (2013)Google Scholar
- 61.W. Zhai, S. Xue, A. Zhu, Y. Luo, Y. Tian, ChemCatChem 3, 1 (2011)CrossRefGoogle Scholar
- 62.Y. Zhang, Y.-J. Xu, RSC Adv. 4, 6 (2014)Google Scholar