Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3641–3657 | Cite as

Cobalt porphyrin supported on N and P co-doped graphene quantum dots/graphene as an efficient photocatalyst for aerobic oxidation of alcohols under visible-light irradiation

  • Mojtaba Mahyari
  • Jaber Nasrollah Gavgani


The research and development of the new heterogeneous photocatalysts for selective organic transformations under visible-light irradiation and environmentally friendly conditions is still considered as one of the hot topics in the fine chemical industry. Here, we report the synthesis of cobalt porphyrin-supported nitrogen and phosphorus co-doped graphene quantum dots/graphene (CoPP@N, P: GQD/G) and their impressive performance as efficient, recyclable, and noble metal free heterogeneous photocatalysts in the aerobic oxidation reaction of alcohols under visible-light irradiation. In terms of catalytic activity, these catalysts afford much higher conversion (ca. 92%) and selectivity (ca. 86%) than most reported photocatalysts under the same reaction conditions. This work notes the considerable potential of CoPP@N, P: GQD/G photocatalysts in the aerobic oxidation reaction owning to high activity and selectivity, short reaction time, reusability and easy separation under ambient and green conditions.

Graphical Abstract


Photocatalysis Graphene quantum dots Selective aerobic oxidation Biomimetic photocatalyst 



The financial support provided by the Iran National Science Foundation (INSF) is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    X. Lang, X. Chen, J. Zhao, Chem. Soc. Rev. 43, 1 (2014)CrossRefGoogle Scholar
  2. 2.
    C.-J. Li, L. Chen, Chem. Soc. Rev. 35, 1 (2006)CrossRefGoogle Scholar
  3. 3.
    G. Palmisano, S. Yurdakal, V. Augugliaro, V. Loddo, L. Palmisano, Adv. Synth. Catal. 349, 6 (2007)Google Scholar
  4. 4.
    X. Wang, G. Sun, N. Li, P. Chen, Chem. Soc. Rev. 45, 8 (2016)Google Scholar
  5. 5.
    G. Palmisano, V. Augugliaro, M. Pagliaro, L. Palmisano, Chem. Commun. 33, 3425 (2007)CrossRefGoogle Scholar
  6. 6.
    J.C. Colmenares, R. Luque, Chem. Soc. Rev. 43, 3 (2014)CrossRefGoogle Scholar
  7. 7.
    M.L. Marin, L. Santos-Juanes, A. Arques, A.M. Amat, M.A. Miranda, Chem. Rev. 112, 3 (2011)Google Scholar
  8. 8.
    J. Kou, C. Lu, J. Wang, Y. Chen, Z. Xu, R.S. Varma, Chem. Rev. 117, 3 (2017)CrossRefGoogle Scholar
  9. 9.
    N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, Y.-J. Xu, Chem. Rev. 115, 18 (2015)Google Scholar
  10. 10.
    M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S. Dunlop, J.W. Hamilton, J.A. Byrne, K. O’shea, Appl. Catal. B 125, 331 (2012)CrossRefGoogle Scholar
  11. 11.
    M. Zhang, C. Chen, W. Ma, J. Zhao, Angew. Chem. 120, 50 (2008)Google Scholar
  12. 12.
    T. Mlodnicka, J. Mol. Catal. 36, 205 (1986)CrossRefGoogle Scholar
  13. 13.
    K.M. Smith, J.E. Falk, Porphyrins and Metalloporphyrins (Elsevier, Amsterdam, 1975)Google Scholar
  14. 14.
    Z.J. LI, X. Zhen-Qiang Chinese, J. Org. Chem. 25, 1 (2005)Google Scholar
  15. 15.
    P. Böhm, H. Gröger, ChemCatChem 7, 1 (2015)CrossRefGoogle Scholar
  16. 16.
    V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu, Macromol. Mater. Eng. 296, 10 (2011)CrossRefGoogle Scholar
  17. 17.
    G.S. Machado, K.A.D. de Freitas Castro, F. Wypych, S. Nakagaki, J. Mol. Catal. A: Chem. 283, 1 (2008)CrossRefGoogle Scholar
  18. 18.
    V. Mirkhani, S. Tangestaninejad, M. Moghadam, Z. Karimian, Bioorg. Med. Chem. Lett. 13, 20 (2003)CrossRefGoogle Scholar
  19. 19.
    M. Nandi, P. Roy, H. Uyama, A. Bhaumik, Dalton Trans. 40, 46 (2011)CrossRefGoogle Scholar
  20. 20.
    M. Mahyari, M.S. Laeini, A. Shaabani, Chem. Commun. 50, 58 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Mahyari, A. Shaabani, Appl. Catal. A 469, 524 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Bacon, S.J. Bradley, T. Nann, Part. Part. Syst. Charact. 31, 4 (2014)CrossRefGoogle Scholar
  23. 23.
    A.D. Güçlü, P. Potasz, M. Korkusinski, P. Hawrylak, Graphene Quantum Dots (Springer, Berlin, 2014)CrossRefGoogle Scholar
  24. 24.
    J. Shen, Y. Zhu, X. Yang, C. Li, Chem. Commun. 48, 31 (2012)Google Scholar
  25. 25.
    V. Gupta, N. Chaudhary, R. Srivastava, G.D. Sharma, R. Bhardwaj, S. Chand, J. Am. Chem. Soc. 133, 26 (2011)CrossRefGoogle Scholar
  26. 26.
    B.-X. Zhang, H. Gao, X.-L. Li, New J. Chem. 38, 9 (2014)Google Scholar
  27. 27.
    D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie, Z. Sun, Nanoscale 5, 24 (2013)Google Scholar
  28. 28.
    Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, L. Qu, J. Am. Chem. Soc. 134, 1 (2011)Google Scholar
  29. 29.
    P.A. Denis, R. Faccio, A.W. Mombru, ChemPhysChem 10, 4 (2009)CrossRefGoogle Scholar
  30. 30.
    Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Carbon 50, 12 (2012)Google Scholar
  31. 31.
    H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta, A. Okamoto, Adv. Mater. 24, 39 (2012)CrossRefGoogle Scholar
  32. 32.
    C. Li, J. Zhou, W. Gao, J. Zhao, J. Liu, Y. Zhao, M. Wei, D.G. Evans, X. Duan, J. Mater. Chem. A 1, 5370 (2013)CrossRefGoogle Scholar
  33. 33.
    M. Mahyari, Y. Bide, J.N. Gavgani, Appl. Catal. A 517, 100 (2016)CrossRefGoogle Scholar
  34. 34.
    A. Ananthanarayanan, Y. Wang, P. Routh, M.A. Sk, A. Than, M. Lin, J. Zhang, J. Chen, H. Sun, P. Chen, Nanoscale 7, 17 (2015)CrossRefGoogle Scholar
  35. 35.
    J.N. Gavgani, H. Adelnia, D. Zaarei, M.M. Gudarzi, RSC Adv. 6, 33 (2016)CrossRefGoogle Scholar
  36. 36.
    H. Fei, R. Ye, G. Ye, Y. Gong, Z. Peng, X. Fan, E.L. Samuel, P.M. Ajayan, J.M. Tour, ACS NANO 8, 10 (2014)Google Scholar
  37. 37.
    M. SadegháLaeini, Chem. Commun. 50, 58 (2014)CrossRefGoogle Scholar
  38. 38.
    J.N. Gavgani, A. Hasani, M. Nouri, M. Mahyari, A. Salehi, Sens. Actuators B: Chem. 229, 239 (2016)CrossRefGoogle Scholar
  39. 39.
    G.-J. ten Brink, I.W. Arends, R.A. Sheldon, Science 287, 5458 (2000)CrossRefGoogle Scholar
  40. 40.
    M. Besson, P. Gallezot, Catal. Today 57, 1 (2000)CrossRefGoogle Scholar
  41. 41.
    N. Aratani, A. Osuka, Macromol Rapid Commun. 22, 10 (2001)CrossRefGoogle Scholar
  42. 42.
    C.J. Medforth, Z. Wang, K.E. Martin, Y. Song, J.L. Jacobsen, J.A. Shelnutt, Chem. Commun. 47, 7261 (2009)CrossRefGoogle Scholar
  43. 43.
    M. Hajimohammadi, N. Safari, H. Mofakham, F. Deyhimi, Green Chem. 13, 4 (2011)CrossRefGoogle Scholar
  44. 44.
    M. Calvete, G.Y. Yang, M. Hanack, Synth. Met. 141, 3 (2004)CrossRefGoogle Scholar
  45. 45.
    W.-J. Sun, J. Li, G.-P. Yao, F.-X. Zhang, J.-L. Wang, Appl. Surf. Sci. 258, 2 (2011)CrossRefGoogle Scholar
  46. 46.
    M. Wang, Z. Fang, K. Zhang, J. Fang, F. Qin, Z. Zhang, J. Li, Y. Liu, Y. Lai, Nanoscale 8, 22 (2016)CrossRefGoogle Scholar
  47. 47.
    B. Shi, Y. Su, L. Zhang, M. Huang, R. Liu, S. Zhao, ACS Appl. Mater. Interfaces. 8, 17 (2016)Google Scholar
  48. 48.
    X. Sun, C. Brückner, Y. Lei, Nanoscale 7, 41 (2015)Google Scholar
  49. 49.
    W. Tu, J. Lei, S. Zhang, H. Ju, Chem.–A Eur. J. 16, 35 (2010)Google Scholar
  50. 50.
    J. Chen, C.P. Collier, J. Phys. Chem. B 109, 16 (2005)Google Scholar
  51. 51.
    X. Qiao, S. Liao, C. You, R. Chen, Catalysts 5, 2 (2015)CrossRefGoogle Scholar
  52. 52.
    Y. Wang, B. Zhang, M. Xu, X. He, RSC Adv. 5, 105 (2015)Google Scholar
  53. 53.
    D. Huang, J. Lu, S. Li, Y. Luo, C. Zhao, B. Hu, M. Wang, Y. Shen, Langmuir 30, 23 (2014)Google Scholar
  54. 54.
    Y. Zhang, Z.-R. Tang, X. Fu, Y.-J. Xu, ACS Nano 5, 9 (2011)Google Scholar
  55. 55.
    S. Farhadi, M. Zaidi, Appl. Catal. A 354, 1 (2009)CrossRefGoogle Scholar
  56. 56.
    F. Su, S.C. Mathew, G. Lipner, X. Fu, M. Antonietti, S. Blechert, X. Wang, J. Am. Chem. Soc. 132, 46 (2010)CrossRefGoogle Scholar
  57. 57.
    S. Furukawa, A. Tamura, T. Shishido, K. Teramura, T. Tanaka, Appl. Catal. B 110, 216 (2011)CrossRefGoogle Scholar
  58. 58.
    W. Feng, G. Wu, L. Li, N. Guan, Green Chem. 13, 11 (2011)CrossRefGoogle Scholar
  59. 59.
    Q. Wang, M. Zhang, C. Chen, W. Ma, J. Zhao, Angew. Chem. Int. Ed. 49, 43 (2010)Google Scholar
  60. 60.
    L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Dalton Trans. 42, 37 (2013)Google Scholar
  61. 61.
    W. Zhai, S. Xue, A. Zhu, Y. Luo, Y. Tian, ChemCatChem 3, 1 (2011)CrossRefGoogle Scholar
  62. 62.
    Y. Zhang, Y.-J. Xu, RSC Adv. 4, 6 (2014)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Malek-Ashtar University of TechnologyTehranIran
  2. 2.Department of Polymer Engineering and Color TechnologyAmirkabir University of TechnologyTehranIran

Personalised recommendations