Skip to main content

Advertisement

Log in

CO2 capture and sequestration by sodium humate and Ca(OH)2 from carbide slag

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A new method of carbon capture and sequestration (CCS) by sodium humate (HA–Na) and Ca(OH)2 from carbide slag (CS) solution was proposed. The effects of various operating parameters, such as the additive amount of HA–Na, pH, temperature, gas flow rate, CO2 inlet concentration, and stirring rate on both the Ca ion concentration and Ca conversion rate were investigated in a lab-scale bubbling reactor. The synergistic mechanism of HA–Na and Ca(OH)2 from CS on CCS is also put forward and demonstrated. The experimental results indicate that HA–Na may improve significantly the CCS capability of CS since the Ca conversion rate of CS is increased 10% by HA–Na additive. The pH is a key factor for the CO2 absorption process and HA–Na may lower the rate of pH decrease of Ca(OH)2 solution. The increasing temperature, stirring rate, and CO2 inlet concentration are favorable to CO2 capture, as well as low gas flow rate. Ca(OH)2 from CS mixed with HA–Na solution shows good performance in CO2 uptake, and the Ca conversion rate reaches 99% with 100 mL of Ca(OH)2 (1.5 g/L) solution mixed with 0.1 g HA–Na at 40 °C, a gas flow rate of 0.1 L/min, and an inlet CO2 concentration of 100% at ambient pressure. Moreover, calcite CaCO3 is is identified as the main product of CO2 capture by X-ray diffraction and scanning electron microscopy analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Freund, Geological Storage of Carbon Dioxide (CO 2 ) (Woodhead, Cambridge, 2013)

    Google Scholar 

  2. Q. Wang, J.Z. Luo, Z.Y. Zhong, A. Borgna, Energy Environ. Sci. 4, 42 (2011)

    Article  CAS  Google Scholar 

  3. E.R. Bobicki, Q.X. Liu, Z.H. Xu, H.B. Zeng, Prog. Energy Combust. Sci. 38, 302 (2012)

    Article  CAS  Google Scholar 

  4. A. Sanna, M. Uibu, G. Caramanna, R. Kuusik, M.M. Maroto-Valer, Chem. Soc. Rev. 43, 8049 (2014)

    Article  CAS  Google Scholar 

  5. M.E. Boot-Handford, J.C. Abanades, E.J. Anthony, M.J. Blunt, S. Brandani, N. Mac Dowell, J.R. Fernández, M.C. Ferrari, R. Gross, J.P. Hallett, R.S. Haszeldine, P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R.T.J. Porter, M. Pourkashanian, G.T. Rochelle, N. Shah, J.G. Yao, P.S. Fennell, Energy Environ. Sci. 7, 130 (2014)

    Article  CAS  Google Scholar 

  6. A. Kaithwas, M. Prasad, A. Kulshreshtha, S. Verma, Chem. Eng. Res. Des. 90, 1632 (2012)

    Article  CAS  Google Scholar 

  7. C.W. Zhao, X.P. Chen, E.J. Anthony, X. Jiang, L.B. Duan, Y. Wu, W. Dong, C.S. Zhao, Prog. Energy Combust. Sci. 39, 515 (2013)

    Article  Google Scholar 

  8. Z.R. He, Y.J. Li, X.T. Ma, W. Zhang, C.Y. Chi, Z.Y. Wang, Int. J. Hydrogen Energy 41, 4296 (2016)

    Article  CAS  Google Scholar 

  9. Y.J. Li, R.Y. Sun, C.T. Liu, H.L. Liu, C.M. Lu, Int. J. Greenhouse Gas Control 9, 117 (2012)

    Article  Google Scholar 

  10. W. Zhang, Y.J. Li, L.B. Duan, X.T. Ma, Z.Y. Wang, C.M. Lu, Chem. Eng. Res. Des. 109, 806 (2016)

    Article  CAS  Google Scholar 

  11. Y.J. Li, R.Y. Sun, J.L. Zhao, C.T. Liu, C.M. Lu, Chem. Eng. Res. Des. 38, 13655 (2013)

    Google Scholar 

  12. C.T. Liu, Y.J. Li, R.Y. Sun, S.M. Wu, Asia Pac. J. Chem. Eng. 9, 678 (2014)

    Article  CAS  Google Scholar 

  13. Y.J. Li, M.Y. Su, X. Xie, S.M. Wu, C.T. Liu, Appl. Energy 145, 60 (2015)

    Article  CAS  Google Scholar 

  14. X.T. Ma, Y.J. Li, L. Shi, Z.R. He, Z.Y. Wang, Appl. Energy 168, 85 (2016)

    Article  CAS  Google Scholar 

  15. J. Sun, W.Q. Liu, Y.C. Hu, J.Q. Wu, M.K. Li, X.W. Yang, W.Y. Wang, M.H. Xu, Chem. Eng. J. 285, 293 (2016)

    Article  CAS  Google Scholar 

  16. A.G. De-Melo, F.L. Motta, M.H. Santana, Mater. Sci. Eng. C. 62, 967 (2016)

    Article  CAS  Google Scholar 

  17. Z.G. Sun, H.Y. Gao, G.X. Hu, Y.H. Li, Environ. Eng. Sci. 26, 1249 (2009)

    Article  CAS  Google Scholar 

  18. G.X. Hu, Z.G. Sun, H.Y. Gao, Environ. Sci. Technol. 44, 6712 (2010)

    Article  CAS  Google Scholar 

  19. Z.G. Sun, Y. Zhao, H.Y. Gao, G.X. Hu, Energy Fuels 24, 1013 (2010)

    Article  CAS  Google Scholar 

  20. Z.G. Sun, B. Tang, H.Y. Xie, Energy Fuels 29, 1269 (2015)

    Article  CAS  Google Scholar 

  21. Z.G. Sun, J.T. Yang, L. Zhang, H.Y. Xie, NANO 11, 1650070 (2016)

    Article  CAS  Google Scholar 

  22. Z.G. Sun, H.Y. Xie, L. Yang, Y.T. Zhu. CN. Patent 201210365138.2. (2012)

  23. O. Rahmani, R. Junin, M. Tyrer, R. Mohsin, Energy Fuels 28, 5953 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support by the Natural Science Foundation of Shanghai (nos. 15ZR1416900, 16ZR1412600), State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University (no. LK1518), Cultivate Discipline Fund of Shanghai Second Polytechnic University (no. XXKPY1601), and Postgraduate Foundation of Shanghai Second Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Feng, R., Zhang, L. et al. CO2 capture and sequestration by sodium humate and Ca(OH)2 from carbide slag. Res Chem Intermed 44, 3613–3627 (2018). https://doi.org/10.1007/s11164-018-3328-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3328-x

Keywords

Navigation