Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3613–3627 | Cite as

CO2 capture and sequestration by sodium humate and Ca(OH)2 from carbide slag

  • Zhiguo Sun
  • Run Feng
  • Li Zhang
  • Hongyong Xie


A new method of carbon capture and sequestration (CCS) by sodium humate (HA–Na) and Ca(OH)2 from carbide slag (CS) solution was proposed. The effects of various operating parameters, such as the additive amount of HA–Na, pH, temperature, gas flow rate, CO2 inlet concentration, and stirring rate on both the Ca ion concentration and Ca conversion rate were investigated in a lab-scale bubbling reactor. The synergistic mechanism of HA–Na and Ca(OH)2 from CS on CCS is also put forward and demonstrated. The experimental results indicate that HA–Na may improve significantly the CCS capability of CS since the Ca conversion rate of CS is increased 10% by HA–Na additive. The pH is a key factor for the CO2 absorption process and HA–Na may lower the rate of pH decrease of Ca(OH)2 solution. The increasing temperature, stirring rate, and CO2 inlet concentration are favorable to CO2 capture, as well as low gas flow rate. Ca(OH)2 from CS mixed with HA–Na solution shows good performance in CO2 uptake, and the Ca conversion rate reaches 99% with 100 mL of Ca(OH)2 (1.5 g/L) solution mixed with 0.1 g HA–Na at 40 °C, a gas flow rate of 0.1 L/min, and an inlet CO2 concentration of 100% at ambient pressure. Moreover, calcite CaCO3 is is identified as the main product of CO2 capture by X-ray diffraction and scanning electron microscopy analysis.


CO2 Capture Sequestration Sodium humate Ca(OH)2 Carbide slag 



The authors gratefully acknowledge financial support by the Natural Science Foundation of Shanghai (nos. 15ZR1416900, 16ZR1412600), State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University (no. LK1518), Cultivate Discipline Fund of Shanghai Second Polytechnic University (no. XXKPY1601), and Postgraduate Foundation of Shanghai Second Polytechnic University.


  1. 1.
    P. Freund, Geological Storage of Carbon Dioxide (CO 2 ) (Woodhead, Cambridge, 2013)Google Scholar
  2. 2.
    Q. Wang, J.Z. Luo, Z.Y. Zhong, A. Borgna, Energy Environ. Sci. 4, 42 (2011)CrossRefGoogle Scholar
  3. 3.
    E.R. Bobicki, Q.X. Liu, Z.H. Xu, H.B. Zeng, Prog. Energy Combust. Sci. 38, 302 (2012)CrossRefGoogle Scholar
  4. 4.
    A. Sanna, M. Uibu, G. Caramanna, R. Kuusik, M.M. Maroto-Valer, Chem. Soc. Rev. 43, 8049 (2014)CrossRefGoogle Scholar
  5. 5.
    M.E. Boot-Handford, J.C. Abanades, E.J. Anthony, M.J. Blunt, S. Brandani, N. Mac Dowell, J.R. Fernández, M.C. Ferrari, R. Gross, J.P. Hallett, R.S. Haszeldine, P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R.T.J. Porter, M. Pourkashanian, G.T. Rochelle, N. Shah, J.G. Yao, P.S. Fennell, Energy Environ. Sci. 7, 130 (2014)CrossRefGoogle Scholar
  6. 6.
    A. Kaithwas, M. Prasad, A. Kulshreshtha, S. Verma, Chem. Eng. Res. Des. 90, 1632 (2012)CrossRefGoogle Scholar
  7. 7.
    C.W. Zhao, X.P. Chen, E.J. Anthony, X. Jiang, L.B. Duan, Y. Wu, W. Dong, C.S. Zhao, Prog. Energy Combust. Sci. 39, 515 (2013)CrossRefGoogle Scholar
  8. 8.
    Z.R. He, Y.J. Li, X.T. Ma, W. Zhang, C.Y. Chi, Z.Y. Wang, Int. J. Hydrogen Energy 41, 4296 (2016)CrossRefGoogle Scholar
  9. 9.
    Y.J. Li, R.Y. Sun, C.T. Liu, H.L. Liu, C.M. Lu, Int. J. Greenhouse Gas Control 9, 117 (2012)CrossRefGoogle Scholar
  10. 10.
    W. Zhang, Y.J. Li, L.B. Duan, X.T. Ma, Z.Y. Wang, C.M. Lu, Chem. Eng. Res. Des. 109, 806 (2016)CrossRefGoogle Scholar
  11. 11.
    Y.J. Li, R.Y. Sun, J.L. Zhao, C.T. Liu, C.M. Lu, Chem. Eng. Res. Des. 38, 13655 (2013)Google Scholar
  12. 12.
    C.T. Liu, Y.J. Li, R.Y. Sun, S.M. Wu, Asia Pac. J. Chem. Eng. 9, 678 (2014)CrossRefGoogle Scholar
  13. 13.
    Y.J. Li, M.Y. Su, X. Xie, S.M. Wu, C.T. Liu, Appl. Energy 145, 60 (2015)CrossRefGoogle Scholar
  14. 14.
    X.T. Ma, Y.J. Li, L. Shi, Z.R. He, Z.Y. Wang, Appl. Energy 168, 85 (2016)CrossRefGoogle Scholar
  15. 15.
    J. Sun, W.Q. Liu, Y.C. Hu, J.Q. Wu, M.K. Li, X.W. Yang, W.Y. Wang, M.H. Xu, Chem. Eng. J. 285, 293 (2016)CrossRefGoogle Scholar
  16. 16.
    A.G. De-Melo, F.L. Motta, M.H. Santana, Mater. Sci. Eng. C. 62, 967 (2016)CrossRefGoogle Scholar
  17. 17.
    Z.G. Sun, H.Y. Gao, G.X. Hu, Y.H. Li, Environ. Eng. Sci. 26, 1249 (2009)CrossRefGoogle Scholar
  18. 18.
    G.X. Hu, Z.G. Sun, H.Y. Gao, Environ. Sci. Technol. 44, 6712 (2010)CrossRefGoogle Scholar
  19. 19.
    Z.G. Sun, Y. Zhao, H.Y. Gao, G.X. Hu, Energy Fuels 24, 1013 (2010)CrossRefGoogle Scholar
  20. 20.
    Z.G. Sun, B. Tang, H.Y. Xie, Energy Fuels 29, 1269 (2015)CrossRefGoogle Scholar
  21. 21.
    Z.G. Sun, J.T. Yang, L. Zhang, H.Y. Xie, NANO 11, 1650070 (2016)CrossRefGoogle Scholar
  22. 22.
    Z.G. Sun, H.Y. Xie, L. Yang, Y.T. Zhu. CN. Patent 201210365138.2. (2012)Google Scholar
  23. 23.
    O. Rahmani, R. Junin, M. Tyrer, R. Mohsin, Energy Fuels 28, 5953 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Environmental and Materials EngineeringShanghai Second Polytechnic UniversityShanghaiPeople’s Republic of China

Personalised recommendations