Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3437–3454 | Cite as

Investigation on the corrosion inhibition of two newly-synthesized thioureas to mild steel in 1 mol/L HCl solution

  • Ying Yan
  • Ling Dai
  • Lehua Zhang
  • Shiliang Zhong
  • Hao Zhou
  • Laiming Wu
  • Lankun Cai
Article
  • 72 Downloads

Abstract

Two kinds of thioureas, 1-N-(1′-(1′,2′,4′-triazole))acetyl-4-N-benzoylthiosemicarbazide (TBU) and 1-N-(1′-(1′,2′,4′-triazole))Methyl-4-N-(3″,5″-dimethyl)benzoylthiosemicarbazide (TDBU) were synthesized and characterized as corrosion inhibitors in 1 mol/L hydrochloric acid to mild steel by weight loss measurement, electrochemical measurement, quantum chemistry calculation and molecular dynamics simulation. The results demonstrate that TBU and TDBU are good inhibitors that could reduce anodic dissolution and retard the hydrogen evolution reaction with the order TBU > TDBU, and that the corrosion inhibition efficiency increases with the increasing thiourea concentration. TBU has a remarkably high inhibition efficiency of 97.5% at a concentration of 1.0 × 10−3 mol/L. The adsorptions of TBU and TDBU on mild steel accord with the Langmuir model. The results of quantum chemical study indicate that the S atom contributes to the adsorption of the corrosion thiourea molecules. The steric hindrance of the methyl group, not an electronic effect, was suggested as the main influencing factor on the inhibition efficiency of the two thioureas, which is relatively rare in literature reports.

Keywords

Mild steel Corrosion inhibitor Electrochemical measurement Weight loss Theoretical study 

Notes

Acknowledgements

The work carried out was supported by the National Nature Science Foundation of China (51671117) and Shanghai City Committee of science and technology research program key support project (13231203000).

References

  1. 1.
    S.D. Shetty, P. Shetty, H.V.S. Nayak, J. Serb. Chem. Soc. 71, 2347–2349 (2006)CrossRefGoogle Scholar
  2. 2.
    C.B. Shen, D.Y. Han, Z.M. Ding, Chin. J. Mater. Res. 109, 417–421 (2008)Google Scholar
  3. 3.
    M.E. Azzouzi, A. Aouniti, S. Tighadouin, H. Elmsellem, S. Radi, B. Hammouti, A.E. Assyry, F. Bentiss, A. Zarrouk, J. Mol. Liq. 221, 633–641 (2016)CrossRefGoogle Scholar
  4. 4.
    Y. Ying, W. Li, L. Cai, B. Hou, Electrochim. Acta 53, 5953–5960 (2008)CrossRefGoogle Scholar
  5. 5.
    H. Choi, Y.K. Song, K.Y. Kim, J.M. Park, Surf. Coat. Technol. 206, 2354–2360 (2012)CrossRefGoogle Scholar
  6. 6.
    M. Metikoš-Huković, K. Furić, R. Babić, A. Marinović, Surf. Interface Anal. 27, 1016–1025 (2015)CrossRefGoogle Scholar
  7. 7.
    M.A. Quraishi, F.A. Ansari, D. Jamal, Mater. Chem. Phys. 77, 687–690 (2003)CrossRefGoogle Scholar
  8. 8.
    V.V. Torres, V.A. Rayol, M. Magalhães, G.M. Viana, L.C.S. Aguiar, S.P. Machado, H. Orofino, E. D’Elia, Corros. Sci. 79, 108–118 (2014)CrossRefGoogle Scholar
  9. 9.
    I. Singh, Corrosion (Houston); (United States) 49(6), 473–478 (1993)CrossRefGoogle Scholar
  10. 10.
    F. Bentiss, M. Traisnel, L. Gengembre, M. Lagrenée, Appl. Surf. Sci. 152, 237–249 (1999)CrossRefGoogle Scholar
  11. 11.
    M. Özcan, İ. Dehri, M. Erbil, Appl. Surf. Sci. 236, 155–164 (2004)CrossRefGoogle Scholar
  12. 12.
    D. Karthik, D. Tamilvendan, G.V. Prabhu, J. Saudi Chem. Soc. 18, 835–844 (2014)CrossRefGoogle Scholar
  13. 13.
    G. Liu, M. Xue, H. Yang, Desalination 419, 133–140 (2017)CrossRefGoogle Scholar
  14. 14.
    A. Tahir, Struct. Rep. Online 65, 1870–1871 (2011)Google Scholar
  15. 15.
    Y. Feng, K.S. Siow, W.K. Teo, A.K. Hsieh, Corros. Sci. 41, 829–852 (1999)CrossRefGoogle Scholar
  16. 16.
    E. Ech-chihbi, M.E. Belghiti, R. Salim, H. Oudda, M. Taleb, N. Benchat, B. Hammouti, F. El-Hajjaji, Surf. Interfaces 9, 206–217 (2017)CrossRefGoogle Scholar
  17. 17.
    G. Quartarone, M. Battilana, L. Bonaldo, T. Tortato, Corros. Sci. 50, 3467–3474 (2008)CrossRefGoogle Scholar
  18. 18.
    Y. Yan, X. Lin, L. Zhang, H. Zhou, L. Wu, L. Cai, Res. Chem. Intermed. 43, 3145–3162 (2017)CrossRefGoogle Scholar
  19. 19.
    E.E. Elemike, H.U. Nwankwo, D.C. Onwudiwe, E.C. Hosten, J. Mol. Struct. 1147, 252–265 (2017)CrossRefGoogle Scholar
  20. 20.
    M.S. Morad, Corros. Sci. 42, 1307–1326 (2000)CrossRefGoogle Scholar
  21. 21.
    K.R. Ansari, M.A. Quraishi, A. Singh, Corros. Sci. 95, 62–70 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Qiang, S. Zhang, S. Yan, X. Zou, S. Chen, Corros. Sci. 119, 68–78 (2017)CrossRefGoogle Scholar
  23. 23.
    A. Popova, S. Raicheva, A.E. Sokolova, M. Christov, Langmuir 12, 2083–2089 (1996)CrossRefGoogle Scholar
  24. 24.
    N. Al-Andis, E. Khamis, A. Al-Mayouf, H. Aboulenin, Corros. Prev. Control 42, 13–20 (1995)Google Scholar
  25. 25.
    M.A. Migahed, H.M. Mohamed, A.M. Al-Sabagh, Mater. Chem. Phys. 80, 169–175 (2003)CrossRefGoogle Scholar
  26. 26.
    B.G. Ateya, B.E. El-Anadouli, F.M. El-Nizamy, Corros. Sci. 24, 509–515 (1984)CrossRefGoogle Scholar
  27. 27.
    E. Cano, J.L. Polo, A.L. Iglesia, J.M. Bastidas, Adsorpt. J. Int. Adsorpt. Soc. 10, 219–225 (2004)CrossRefGoogle Scholar
  28. 28.
    K.F. Khaled, Appl. Surf. Sci. 256, 6753–6763 (2010)CrossRefGoogle Scholar
  29. 29.
    U.J. Naik, P.C. Jha, M.Y. Lone, R.R. Shah, N.K. Shah, J. Mol. Struct. 1125, 63–72 (2016)CrossRefGoogle Scholar
  30. 30.
    K.R. Ansari, M.A. Quraishi, A. Singh, S. Ramkumar, I.B. Obote, RSC Adv. 6, 24130–24141 (2016)CrossRefGoogle Scholar
  31. 31.
    N. Sablon, F.D. Proft, P.W. Ayers, P. Geerlings, J. Chem. Phys. 126, 224108 (2007)CrossRefGoogle Scholar
  32. 32.
    K.F. Khaled, S.A. Fadl-Allah, B. Hammouti, Mater. Chem. Phys. 117, 148–155 (2009)CrossRefGoogle Scholar
  33. 33.
    K.F. Khaled, Mater. Chem. Phys. 124, 760–767 (2010)CrossRefGoogle Scholar
  34. 34.
    X. Li, X. Xie, S. Deng, G. Du Corrosion, Science 87, 27–39 (2014)Google Scholar
  35. 35.
    K.F. Khaled, M.A. Amin, J. Appl. Electrochem. 39, 2553–2568 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Ying Yan
    • 1
  • Ling Dai
    • 1
  • Lehua Zhang
    • 1
  • Shiliang Zhong
    • 1
  • Hao Zhou
    • 2
  • Laiming Wu
    • 2
  • Lankun Cai
    • 1
  1. 1.State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, College of Resources and Environmental EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Shanghai MuseumShanghaiChina

Personalised recommendations