Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3425–3435 | Cite as

Synthesis of Cu2O/multi-walled carbon nanotube hybrid material and its microwave absorption performance

  • Shengtao Gao
  • Honglong Xing
  • Yunfei Li
  • Huan Wang


In this paper, Cu2O/multi-walled carbon nanotube (Cu2O/MWCNT) hybrid material was successfully synthesized by a precipitation method. The constituent, morphology, structure, interaction, and electromagnetic parameters of the Cu2O/MWCNT hybrid material were tested by XRD, SEM, TEM, XPS, FT-IR, TGA, and vector network analysis. The results show that Cu2O nano-particles are randomly deposited on the MWCNTs, the interaction is a chemical force between Cu atoms belonging to Cu2O nano-particles and C=O associated with MWCNTs, and the hybrid material exhibits outstanding microwave absorption ability. When the thickness of the absorber is 1.5 mm, the optimal reflection loss (RL) of the electromagnetic wave is up to −28.8 dB at 11.9 GHz, and the valid bandwidth (RL ≤ −10 dB) is approximately 2.7 GHz (10.7–13.4 GHz). When the thickness of the absorber is 2.0 mm, the optimal RL of the electromagnetic wave is −40.5 dB at 8.1 GHz. The hybrid material has excellent microwave-absorption properties, likely due to its polarization, conductive network, and special interface structure.


Cu2Multi-walled carbon nanotubes Microwave absorption Interaction 



This work was supported by the National Natural Science Foundation of China (grant no. 51477002) and Graduate Innovation Fund Project of Anhui University of Science and Technology.


  1. 1.
    M.M. Lu, W.Q. Cao, H.L. Shi, X.Y. Fang, J. Yang, Z.L. Hou, H.B. Jin, W.Z. Wang, J. Yuan, M.S. Cao, J. Mater. Chem. A 2, 10540 (2014)CrossRefGoogle Scholar
  2. 2.
    Y. Danlée, I. Huynen, C. Bailly, Appl. Phys. Lett. 100, 213105 (2012)CrossRefGoogle Scholar
  3. 3.
    F. Ren, H. Yu, L. Wang, M. Saleem, Z. Tian, P. Ren, RSC Adv. 4, 14419 (2014)CrossRefGoogle Scholar
  4. 4.
    T. Zhao, C. Hou, H. Zhang, R. Zhu, S. She, J. Wang, T. Li, Z. Liu, B. Wei, Sci. Rep. 4, 5619 (2014)CrossRefGoogle Scholar
  5. 5.
    H.C. Ling, L.T. Hu, Z.T. Kai, L.H. Guang, L.L. Hao, Z.W. Juan, New Carbon Mater. 3, 184 (2013)Google Scholar
  6. 6.
    M.M. Lu, M.S. Cao, Y.H. Chen, W.Q. Cao, J. Liu, H.L. Shi, D.Q. Zhang, W.Z. Wang, J. Yuan, A.C.S. Appl, Mater. Interfaces 7, 19408 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Kim, M. Jang, M. Park, N.H. Park, S.Y. Ju, Carbon 117, 220 (2017)CrossRefGoogle Scholar
  8. 8.
    S. Faraji, O. Yildiz, C. Rost, K. Stano, N. Farahbakhsh, Y. Zhu, P.D. Bradford, Carbon 111, 411 (2017)CrossRefGoogle Scholar
  9. 9.
    V. Gomez, S. Irusta, O.B. Lawal, W. Adams, R.H. Hauge, C.W. Dunnill, A.R. Barron, RSC Adv. 6, 11895 (2016)CrossRefGoogle Scholar
  10. 10.
    Y.H. Chen, Z.H. Huang, M.M. Lu, W.Q. Cao, J. Yuan, D.Q. Zhang, M.S. Cao, J. Mater. Chem. A 3, 12621 (2015)CrossRefGoogle Scholar
  11. 11.
    T.K. Gupta, B.P. Singh, S.R. Dhakate, V.N. Singh, R.B. Mathur, J. Mater. Chem. A 1, 9138 (2013)CrossRefGoogle Scholar
  12. 12.
    B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Carbon 65, 124 (2013)CrossRefGoogle Scholar
  13. 13.
    M. Najim, G. Modi, Y.K. Mishra, R. Adelung, D. Singh, V. Agarwala, Phys. Chem. Chem. Phys. 17, 22923 (2015)CrossRefGoogle Scholar
  14. 14.
    T. Xia, C. Zhang, N.A. Oyler, X.B. Chen, Adv. Mater. 25, 6905 (2013)CrossRefGoogle Scholar
  15. 15.
    B. Zhao, B.B. Fan, G. Shao, W.Y. Zhao, R. Zhang, A.C.S. Appl, Mater. Interfaces 7, 18815 (2015)CrossRefGoogle Scholar
  16. 16.
    B. Zhao, B.B. Fan, Y.W. Xu, G. Shao, X.D. Wang, W.Y. Zhao, R. Zhang, A.C.S. Appl, Mater. Interfaces 7, 26217 (2015)CrossRefGoogle Scholar
  17. 17.
    L. Zhang, X.H. Zhang, G.J. Zhang, Z. Zhang, S. Liu, P.F. Li, Q.L. Liao, Y.G. Zhao, Y. Zhang, RSC Adv. 5, 10197 (2015)CrossRefGoogle Scholar
  18. 18.
    T.K. Gupta, B.P. Singh, V.N. Singh, S. Teotia, A.P. Singh, I. Elizabeth, S.R. Dhakate, S.K. Dhawan, R.B. Mathur, J. Mater. Chem. A 2, 4256 (2014)CrossRefGoogle Scholar
  19. 19.
    Y.F. Zhu, Q.Q. Ni, Y.Q. Fu, RSC Adv. 5, 3748 (2015)CrossRefGoogle Scholar
  20. 20.
    X.S. Qi, Y. Deng, W. Zhong, Y. Yang, C. Qin, C. Au, Y.W. Du, J. Phys. Chem. C 114, 808 (2010)CrossRefGoogle Scholar
  21. 21.
    R.Z. Xia, Y.C. Yin, M. Zeng, H.R. Dong, H.Z. Yang, X.J. Zeng, W.K. Tang, R.H. Yu, NANO 9, 1650097 (2016)CrossRefGoogle Scholar
  22. 22.
    L.F. Yang, D.Q. Chu, L.M. Wang, X. Wu, J.Y. Luo, Ceram. Int. 42, 2502 (2016)CrossRefGoogle Scholar
  23. 23.
    L. Zhang, J. Li, Z. Chen, Y. Tang, Y. Yu, Appl. Catal. A Gen. 299, 292 (2006)CrossRefGoogle Scholar
  24. 24.
    T. Premkumar, K.E. Geckeler, J. Phys. Chem. Solids 67, 1451 (2006)CrossRefGoogle Scholar
  25. 25.
    Y.J. Zhang, X.P. Fu, C.Y. Wang, S.B. Lu, Int. J. Electrochem. Sci. 10, 8722 (2016)CrossRefGoogle Scholar
  26. 26.
    Y.S. Luo, Q.F. Ren, J.L. Li, Z.J. Jia, Q.R. Dai, Y. Zhang, B.H. Yu, Nanotechnology 23, 5836 (2006)CrossRefGoogle Scholar
  27. 27.
    S. Song, R. Rao, H. Yang, A. Zhang, J. Phys. Chem. C 33, 13998 (2010)CrossRefGoogle Scholar
  28. 28.
    X.J. Zhang, G.F. Wang, W. Zhang, Y. Wei, B. Fang, Biosens. Bioelectron. 24, 3395 (2009)CrossRefGoogle Scholar
  29. 29.
    J. Hu, Y. Bandog, J. Zhan, C. Zhi, D. Golberg, Nano Lett. 6, 1136 (2006)CrossRefGoogle Scholar
  30. 30.
    M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen, H.B. Jin, Z.L. Hou, J.A.C.S. Appl, Mater. Interfaces 4, 6948 (2012)Google Scholar
  31. 31.
    Z.G. Chen, Y.W. Tang, Z.J. Jia, L.S. Zhang, J.L. Li, Y. Yu, J. Inorg. Mater. 2, 367 (2005)Google Scholar
  32. 32.
    L. Wang, H.L. Xing, S.T. Gao, X.L. Ji, Z.Y. Shen, J. Mater. Chem. C 5, 2005 (2017)CrossRefGoogle Scholar
  33. 33.
    Q.L. He, T.T. Yuan, X. Zhang, X.R. Yan, J. Guo, D.W. Ding, A.K. Mojammel, P.Y. David, K. Airat, Z.P. Luo, J.R. Liu, T.D. Shen, X.Y. Liu, S.Y. Wei, Z.H. Guo, J. Phys. Chem. C 118, 24784 (2014)CrossRefGoogle Scholar
  34. 34.
    H. Li, Y. Huang, G. Sun, X. Yan, Y. Yang, J. Wang, Y. Zhang, J. Phys. Chem. C 114, 10088 (2010)CrossRefGoogle Scholar
  35. 35.
    P.C.P. Watts, W.K. Hsu, A. Barnes, B. Chambers, Adv. Mater. 15, 600 (2003)CrossRefGoogle Scholar
  36. 36.
    L. Lin, H.L. Xing, R.W. Shu, L. Wang, X.L. Ji, D.X. Tan, Y. Gan, RSC Adv. 5, 94539 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Shengtao Gao
    • 1
  • Honglong Xing
    • 1
  • Yunfei Li
    • 1
  • Huan Wang
    • 1
  1. 1.School of Chemical EngineeringAnhui University of Science and TechnologyHuainanPeople’s Republic of China

Personalised recommendations