Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3389–3405 | Cite as

Poly(vinylimidazolum acetic acid)-entrapped nanozeolite: efficient heterogeneous catalyst for synthesis of polyhydroquinolines and 1,4-dihydropyridines

  • Tabassom Amoli
  • Seyed Meysam Baghbanian
Article
  • 83 Downloads

Abstract

An effective method for synthesis of substituted 1,4-dihydropyridines and polyhydroquinoline derivatives by Hantzsch reaction using poly(ionic liquid)-based nanozeolite (NZ@PIL-COOH) catalyst under simple conditions is described. The new solid acid catalyst was prepared by polymerization of 3-carboxymethyl-1-vinylimidazolium in presence of modified nanozeolite, and characterized by Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD) analysis, and transmission electron microscopy (TEM). The resulting heterogeneous catalyst displayed high catalytic performance under mild reaction condition in short reaction time. The catalyst was recycled eight times without any loss in reactivity or yield.

Keywords

Nanozeolite 3-Carboxymethyl-1-vinylimidazolium Poly(vinylimidazolum acetic acid) Polyhydroquinolines 1,4-Dihydropyridines 

Notes

Acknowledgements

This research is supported by the Islamic Azad University, Ayatollah Amoli Branch, I. R. Iran.

References

  1. 1.
    A. Dömling, Chem. Rev. 106, 17 (2006)CrossRefGoogle Scholar
  2. 2.
    P. Slobbe, E. Ruijter, R.V.A. Orru, Med. Chem. Commun. 3, 1189 (2012)CrossRefGoogle Scholar
  3. 3.
    R. Mannhold, B. Jablonka, W. Voigdt, K. Schoenafinger, K. Schravan, Eur. J. Med. Chem. 27, 229 (1992)CrossRefGoogle Scholar
  4. 4.
    J. Moreau, J.P. Hurvois, M.D. Mbaye, J.L. Renaud, Targets Heterocycl. Syst. 13, 201 (2009)Google Scholar
  5. 5.
    C.O. Kappe, Eur. J. Med. Chem. 35, 1043 (2000)CrossRefGoogle Scholar
  6. 6.
    M.F. Gordeev, D.V. Patel, B.P. England, S. Jonnalagadda, J.D. Combs, E.M. Gordon, Bioorg. Med. Chem. 6, 883 (1998)CrossRefGoogle Scholar
  7. 7.
    J.P. Wan, Y. Liu, RSC Adv. 2, 9763 (2012)CrossRefGoogle Scholar
  8. 8.
    D.M. Stout, A.I. Meyers, Chem. Rev. 82, 223 (1982)CrossRefGoogle Scholar
  9. 9.
    R. Sridhar, P.T. Perumal, Tetrahedron 61, 2465 (2005)CrossRefGoogle Scholar
  10. 10.
    Debache, R. Boulcina, A. Belfaitah, S. Rhouati, B. Carboni, Synlett. 509 (2008)Google Scholar
  11. 11.
    S.R. Cherkupally, Chem. Pharm. Bull. 56, 1002 (2008)CrossRefGoogle Scholar
  12. 12.
    M. Ghorbani, S. Noura, M. Oftadeh, M. Narimani, J. Mol. Liq. 209, 224 (2015)CrossRefGoogle Scholar
  13. 13.
    G. Bartoli, B. Krzysztof, M. Bosco, A. Carlone, P. Galzerano, P. Melchirro, L. Sambri, Synlett. 2897 (2007)Google Scholar
  14. 14.
    L.D.S. Yadav, R. Kapoor, Synlett. 2348 2008)Google Scholar
  15. 15.
    S. Kikuchi, M. Iwai, H. Murayama, S.I. Fukuzawa, Tetrahedron Lett. 49, 11 (2008)CrossRefGoogle Scholar
  16. 16.
    H. Li, P.S. Bhadury, B. Song, S. Yang, RSC Adv. 2, 12525 (2012)CrossRefGoogle Scholar
  17. 17.
    F. Nkinahamira, T. Su, Y. Xie, G. Ma, H. Wang, J. Li, Chem. Eng. J. 15, 831 (2017)CrossRefGoogle Scholar
  18. 18.
    P. Losch, A.M. Pascual, M. Boltz, S. Lvanova, B. Louis, F. Montilla, J.A. Odriozola, Compt. Rend. Chim. 18, 324 (2015)CrossRefGoogle Scholar
  19. 19.
    F. Adam, J.N. Appaturi, E.P. Ng, J. Mol. Catal. A: Chem. 386, 42 (2014)CrossRefGoogle Scholar
  20. 20.
    J. Jiang, Y. Zhang, X. Guo, H. Zhang, Macromolecules 44, 5893 (2011)CrossRefGoogle Scholar
  21. 21.
    J. Lu, P.H. Toy, Chem. Rev. 109, 815 (2009)CrossRefGoogle Scholar
  22. 22.
    D. Mecerreyes, Applications of Ionic Liquids in Polymer Science and Technology (Springer, Berlin, 2015)CrossRefGoogle Scholar
  23. 23.
    K. Mukhopadhyay, A. Koshio, T. Sugai, N. Tanaka, H. Shinohara, Z. Konya, J.B. Nagy, Chem. Phys. Lett. 303, 117 (1999)CrossRefGoogle Scholar
  24. 24.
    T. Okamoto, T. Kawakubo, T. Hiraoka, T. Okazaki, T. Sugai. H. Shinohara, Mol. Cryst. Liq. Cryst. 387, 93 (2002)CrossRefGoogle Scholar
  25. 25.
    F.A. Mumpton, Proc. Natl. Acad. Sci. USA 96, 3463 (1999)CrossRefGoogle Scholar
  26. 26.
    W.M.V. Rhijn, D.E.D. Vos, B.F. Sels, W.D. Bossaert, P.A. Jacobs, Chem. Commun. 3, 317 (1998)CrossRefGoogle Scholar
  27. 27.
    W.D. Bossaert, D.E.D. Vos, W.M.V. Rhijn, J. Bullen, P.J. Grobet, P.A. Jacobs, J. Catal. 182, 156 (1999)CrossRefGoogle Scholar
  28. 28.
    S.M. Baghbanian, N. Rezaei, H. Tashakkorian, Green Chem. 15, 3446 (2013)CrossRefGoogle Scholar
  29. 29.
    J. Yuan, M. Antonietti, Macromolecules 44, 744 (2011)CrossRefGoogle Scholar
  30. 30.
    S. Kumar, P. Sharma, K.K. Kapoor, M.S. Hundal, Tetrahedron 64, 536 (2008)CrossRefGoogle Scholar
  31. 31.
    K. Aswin, K. Logaiya, P.N. Sudhan, S.S. Mansoor, J. T. U. Sci. 6, 1 (2012)Google Scholar
  32. 32.
    D.S. Rekunge, C.K. Khatri, G.U. Chaturbhuj, Tetrahedron Lett. 58, 1240 (2017)CrossRefGoogle Scholar
  33. 33.
    A. Davoodnia, S. Allameh, S. Fazli, N. Tavakoli-Hoseini. Chem. Pap. 65, 714 (2011)CrossRefGoogle Scholar
  34. 34.
    A. Amoozadeh, S. Rahmani, M. Bitaraf, F. Bolghan Abadi, E. Tabrizian. New J. Chem. 40, 770 (2016)CrossRefGoogle Scholar
  35. 35.
    A. Amoozadeh, S. Golian, S. Rahmani. RSC Adv. 5, 45974 (2015)CrossRefGoogle Scholar
  36. 36.
    F. Shahbazi, K. Amani, Catal. Commun. 55, 57 (2014)CrossRefGoogle Scholar
  37. 37.
    E. Sheikhhosseini, D. Ghazanfari, V. Nezamabadi, Iranian J. Catal. (IJC) 3, 197 (2013)Google Scholar
  38. 38.
    M. Moghaddas, A. Davoodnia, Res. Chem. Intermed. 41, 4373 (2015)CrossRefGoogle Scholar
  39. 39.
    H.A. Oskooie, M.M. Heravi, N. Karimi, M.E. Zadeh, Synth. Commun. 41, 436 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Ayatollah Amoli BranchIslamic Azad UniversityAmolIran

Personalised recommendations