Advertisement

Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3279–3291 | Cite as

In situ polymerization of poly(vinylimidazole) into the pores of ‎hierarchical MFI zeolite as an acid–base bifunctional catalyst for one-pot ‎C–C bond cascade reactions

  • Roozbeh Javad Kalbasi
  • Sanaz Mansouri
  • Omid Mazaheri
Article
  • 104 Downloads

Abstract

Poly(vinylimidazole)/hierarchical ZSM-5 has been prepared as a novel and efficient acid–base bifunctional catalyst by a simple method. First, the hierarchical ZSM-5 zeolite was synthesized by an indirect method from KIT-6 as a silica source. By this method, control of the zeolite crystallization was achieved due to the adjustment transformation processing of amorphous mesoporous silica to zeolite crystal. Then, vinylimidazole as a basic part was polymerized by an in situ method into the zeolite’s pores. This acid–base bifunctional heterogeneous catalyst was characterized by FT-IR, TG-DTG, N2 adsorption–desorption, TEM, SEM, NH3-TPD, and XRD. The catalyst has been applied to one-pot C–C bond formation tandem reactions including deacetalization–Henry reaction and deacetalization–Aldol condensation by the simple method at low temperature. Due to the uniform distribution of poly(vinylimidazole) in the micro-meso pores of the hierarchical zeolite reactants, the products easily pass through the catalytic active sites. The co-existence of acidic and basic sites in the structure of the catalyst has a crucial role in the superior activity of this catalyst. Moreover, the catalyst showed excellent recyclability and high activity even after 7 runs with ‎only a 10% reduction in activity being detected.‎

Keywords

Hierarchical ZSM-5 Acid–base bifunctional catalyst Poly(vinylimidazole) Deacetalization–Henry reaction Deacetalization–Aldol condensation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11164_2018_3306_MOESM1_ESM.docx (723 kb)
Supplementary material 1 (DOCX 723 kb)

References

  1. 1.
    M. Filice, J.M. Palomo, ACS Catal. 4, 1588 (2014)CrossRefGoogle Scholar
  2. 2.
    J.M. Lee, Y. Na, H. Han, S. Chang, Chem. Soc. Rev. 33, 302 (2004)CrossRefGoogle Scholar
  3. 3.
    M.M. Heravi, V. Zadsirjan, M. Dehghani, N. Hosseintash, Tetrahedron Asymmetry 28, 587 (2017)CrossRefGoogle Scholar
  4. 4.
    N.G. Schmidt, E. Eger, W. Kroutil, ACS Catal. 6, 4286 (2016)CrossRefGoogle Scholar
  5. 5.
    L.C. Lee, J. Lu, M. Weck, C.W. Jones, ACS Catal. 6, 784 (2016)CrossRefGoogle Scholar
  6. 6.
    L.B. Sun, X.Q. Liu, H.C. Zhou, Chem. Soc. Rev. 44, 5092 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Li, A. Pasc, V. Fierro, A. Celzard, J. Mater. Chem. A 4, 12686 (2016)CrossRefGoogle Scholar
  8. 8.
    M.H. Sun, S.Z. Huang, L.H. Chen, Y. Li, X.Y. Yang, Z.Y. Yuan, B.L. Su, Chem. Soc. Rev. 45, 3479 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Ferré, R. Pleixats, M.W.C. Man, X. Cattoën, Green Chem. 18, 881 (2016)CrossRefGoogle Scholar
  10. 10.
    D. Jagadeesan, Appl. Catal. A Gen. 511, 59 (2016)CrossRefGoogle Scholar
  11. 11.
    E. Gianotti, U. Diaz, A. Velty, A. Corma, Catal. Sci. Technol. 3, 2677 (2013)CrossRefGoogle Scholar
  12. 12.
    X. Meng, F.S. Xiao, Chem. Rev. 114, 1521 (2014)CrossRefGoogle Scholar
  13. 13.
    K.A. Cychosz, R. Guillet-Nicolas, J. García-Martínez, M. Thommes, Chem. Soc. Rev. 46, 389 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Hartmann, A.G. Machoke, W. Schwieger, Chem. Soc. Rev. 45, 3313 (2016)CrossRefGoogle Scholar
  15. 15.
    W. Schwieger, A.G. Machoke, T. Weissenberger, A. Inayat, T. Selvam, M. Klumpp, Chem. Soc. Rev. 45, 3353 (2016)CrossRefGoogle Scholar
  16. 16.
    T. Ge, Z. Hua, Y. Zhu, Y. Song, G. Tao, X. Zhou, L. Chen, W. Ren, H. Yao, J. Shi, RSC Adv. 4, 64871 (2014)CrossRefGoogle Scholar
  17. 17.
    C. Liu, C. Cao, J. Liu, X. Wang, Y. Zhu, W. Song, J. Mater. Chem. A. 5, 17464 (2017)CrossRefGoogle Scholar
  18. 18.
    R.J. Kalbasi, O. Mazaheri, New J. Chem. 40, 9627 (2016)CrossRefGoogle Scholar
  19. 19.
    R. Srivastava, B. Sarmah, B. Satpati, RSC Adv. 5, 25998 (2015)CrossRefGoogle Scholar
  20. 20.
    D. Wang, B. Wang, Y. Ding, H. Wu, P. Wu, Chem. Commun. 52, 12817 (2016)CrossRefGoogle Scholar
  21. 21.
    L. Xu, C.G. Li, K. Zhang, P. Wu, ACS Catal. 4, 2959 (2014)CrossRefGoogle Scholar
  22. 22.
    K. Lee, S. Lee, Y. Jun, M. Choi, J. Catal. 347, 222 (2017)CrossRefGoogle Scholar
  23. 23.
    C. Fodor, J. Bozi, M. Blazsó, B. Iván, Macromolecules 45, 8953 (2012)CrossRefGoogle Scholar
  24. 24.
    R.J. Kalbasi, N. Mosaddegh, A. Abbaspourrad, Appl. Catal. A Gen. 423–424, 78 (2012)CrossRefGoogle Scholar
  25. 25.
    Y. Yue, H. Liu, P. Yuan, C. Yu, X. Bao, Sci. Rep. 5, 9270 (2015)CrossRefGoogle Scholar
  26. 26.
    O. Mazaheri, R.J. Kalbasi, RSC Adv. 5, 34398 (2015)CrossRefGoogle Scholar
  27. 27.
    G. Song, D. Xue, J. Xue, F. Li, Microporous Mesoporous Mater. 248, 192 (2017)CrossRefGoogle Scholar
  28. 28.
    Y. Ma, J. Hu, L. Jia, Z. Li, Q. Kan, S. Wu, Mater. Res. Bull. 48, 1881 (2013)CrossRefGoogle Scholar
  29. 29.
    Y. Liu, M. Zhao, L. Cheng, J. Yang, L. Liu, J. Wang, D. Yin, J. Lu, Y. Zhang, Microporous Mesoporous Mater. 260, 116 (2018)CrossRefGoogle Scholar
  30. 30.
    L. Rodríguez-González, F. Hermes, M. Bertmer, E. Rodríguez-Castellón, A. Jiménez-López, U. Simon, Appl. Catal. A Gen. 328, 174 (2007)CrossRefGoogle Scholar
  31. 31.
    R.J. Kalbasi, O. Mazaheri, Catal. Commun. 69, 86 (2015)CrossRefGoogle Scholar
  32. 32.
    Y. Lou, J. Ma, W. Hu, Q. Dai, L. Wang, W. Zhan, Y. Guo, X.M. Cao, Y. Guo, P. Hu, G. Lu, ACS Catal. 6, 8127 (2016)CrossRefGoogle Scholar
  33. 33.
    X. Feng, L. Wang, X. Yao, H. Dong, X. Wang, Y. Wang, Catal. Commun. 90, 106 (2017)CrossRefGoogle Scholar
  34. 34.
    T. Toyao, M. Fujiwaki, Y. Horiuchi, M. Matsuoka, RSC Adv. 3, 21582 (2013)CrossRefGoogle Scholar
  35. 35.
    Y. Yang, H. Yao, F. Xi, E. Gao, J. Mol. Catal A Chem. 390, 198 (2014)CrossRefGoogle Scholar
  36. 36.
    J. Boruwa, N. Gogoi, P.P. Saikia, N.C. Barua, Tetrahedron Asymmetry 17, 3315 (2006)CrossRefGoogle Scholar
  37. 37.
    C. Palomo, M. Oiarbide, A. Laso, Eur. J. Org. Chem. 16, 2561 (2007)CrossRefGoogle Scholar
  38. 38.
    J. Gao, X. Zhang, Y. Lu, S. Liu, J. Liu, Chem. Eur. J. 21, 1 (2015)CrossRefGoogle Scholar
  39. 39.
    Y. Lee, Y. Chung, W. Ahna, RSC Adv. 4, 23064 (2014)CrossRefGoogle Scholar
  40. 40.
    A. Tăbăcaru, N. Xhaferaj, L.M.D.R.S. Martins, E.C.B.A. Alegria, R.S. Chay, C. Giacobbe, K.V. Domasevitch, A.J.L. Pombeiro, S. Galli, C. Pettinari, Inorg. Chem. 55, 5804 (2016)CrossRefGoogle Scholar
  41. 41.
    Y. Yang, X. Liu, X. Li, J. Zhao, S. Bai, J. Liu, Q. Yang, Angew. Chem. Int. Ed. 51, 1 (2012)CrossRefGoogle Scholar
  42. 42.
    Y. Zhang, B. Li, S. Ma, Chem. Commun. 50, 8507 (2014)CrossRefGoogle Scholar
  43. 43.
    D. Vernekar, D. Jagadeesan, Catal. Sci. Technol. 5, 4029 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Roozbeh Javad Kalbasi
    • 1
  • Sanaz Mansouri
    • 2
  • Omid Mazaheri
    • 2
  1. 1.Faculty of ChemistryKharazmi UniversityTehranIran
  2. 2.Department of Chemistry, Shahreza BranchIslamic Azad UniversityIsfahanIran

Personalised recommendations