Research on Chemical Intermediates

, Volume 44, Issue 5, pp 3179–3197 | Cite as

Selective recognition of Cr3+ in multivitamin formulations in aqueous medium by fluorescent organic–inorganic nanohybrids

  • Palos Barba Viviana
  • Carlos Alberto Huerta-Aguilar
  • Narinder Singh
  • Thangarasu Pandiyan
Article
  • 57 Downloads

Abstract

An effective method for the detection of Cr3+ in multivitamin formulations has been developed by using fluorescent organic nanoparticles (FONPs) based on N,N′-bis(5-bromothiophen-2-ylmethyl)ethylenediimine (BTED). In the study, FONPs selectively recognize Cr3+ without inferring other coexisting metal ions in the medium. Since the FONPs enhance the fluorescence intensity with respect to the concentration of Cr ion, they were applied in real samples like multivitamin formulations to detect Cr3+. The stoichiometry of FONPs/Cr3+ analyzed by a Job’s plot was 2:1 (FONPs:metal). The results show that FONPs accurately measure the concentration of Cr3+ in the vitamin tablets in aqueous medium, agreeing with the reported chromium content in the vitamin formulations, and the detection limit was found to be 7.2 μM. Furthermore, the binding nature of the ligand with Cr3+ was studied through the molecular orbital analysis, where a lower energy HOMO was observed for [Cr(BTED)]3+ than that for the free ligand, meaning that the lowering of the receptor HOMO energy enhances the fluorescence emission in the photo-induced electron transfer.

Graphical Abstract

Keywords

Organic nanoparticles Recognition of Cr3+ Fluorescence organic nanoparticles Multivitamin analysis 

Notes

Acknowledgements

The authors acknowledge the Dirección General de Asuntos de Personal Académico (Project PAPIIT No IN209616) and CONACYT-DST for financial support, DGSCA-UNAM for computation facilities, and Viridiana Maturano for the DLS analyses. Palos Barba Viviana thanks CONACyT for the scholarship.

Supplementary material

11164_2018_3300_MOESM1_ESM.docx (835 kb)
Supplementary material 1 (DOCX 835 kb)

References

  1. 1.
    C. Bebear, D.H. Bouanchaud, J. Antimicrob. Chemother. 39, 59 (1997)CrossRefGoogle Scholar
  2. 2.
    F.X. Kang, Q. Wang, W.J. Shou, C.D. Collins, Y.Z. Gao, Environ. Pollut. 220, 112 (2017)CrossRefGoogle Scholar
  3. 3.
    A.S. Pina, I.L. Batalha, C.S.M. Fernandes, M.A. Aoki, A.C.A. Roque, Water Res. 66, 160 (2014)CrossRefGoogle Scholar
  4. 4.
    X.B. Dai, X.Y. Liu, L. Liu, B. Zhu, Z. Fang, Sens. Actuator B. 220, 414 (2015)CrossRefGoogle Scholar
  5. 5.
    A. Chowdhury, P. Howlader, P.S. Mukherjee, Chem. A Eur. J. 22, 1424 (2016)CrossRefGoogle Scholar
  6. 6.
    C.D. Jia, B.A. Wu, S.G. Li, X.J. Huang, Q.L. Zhao, Q.S. Li, X.J. Yang, Angew. Chem. Int. Ed. 50, 486 (2011)CrossRefGoogle Scholar
  7. 7.
    X.H. Wang, X.Y. Wang, C.L. Zhang, Y. Jiao, Z.J. Guo, Chem. Sci. 3, 1304 (2012)CrossRefGoogle Scholar
  8. 8.
    L.L. Wang, H. Huang, S.H. Xiao, D.P. Cai, Y. Liu, B. Liu, D.D. Wang, C.X. Wang, H. Li, Y.R. Wang, Q.H. Li, T.H. Wang, A.C.S. Appl, Mater. Interface 6, 14131 (2014)CrossRefGoogle Scholar
  9. 9.
    O. Vergun, A.I. Sobolevsky, M.V. Yelshansky, J. Keelan, B.I. Khodorov, M.R. Duchen, J. Physiol. Lond. 531, 147 (2001)CrossRefGoogle Scholar
  10. 10.
    T. Kindaichi, I. Tsushima, Y. Ogasawara, M. Shimokawa, N. Ozaki, H. Satoh, S. Okabe, Appl. Environ. Microbiol. 73, 4931 (2007)CrossRefGoogle Scholar
  11. 11.
    Y. Ogasawara, K. Kawano, K. Haga, J. Minabe, S. Yasuda, M. Furuki, K. Hayashi, H. Yoshizawa, Jpn. J. Appl. Phys. Part 1 Regul. Pap. Brief Commun. Rev. Pap. 46, 3828 (2007)CrossRefGoogle Scholar
  12. 12.
    L. Yi, H.Y. Li, L. Sun, L.L. Liu, C.H. Zhang, Z. Xi, Angew. Chem. Int. Ed. 48, 4034 (2009)CrossRefGoogle Scholar
  13. 13.
    M.A. Reddy, N.N. Meeravali, S.J. Kumar, Atomic Spectros. 30, 92 (2009)Google Scholar
  14. 14.
    Q.P. Diao, P.Y. Ma, L.L. Lv, T.C. Li, X.H. Wang, D.Q. Song, Spectrochim. Acta A 156, 15 (2016)CrossRefGoogle Scholar
  15. 15.
    N.N. Meeravali, S.J. Jiang, Talanta 80, 173 (2009)CrossRefGoogle Scholar
  16. 16.
    N. Zhang, J.S. Suleiman, M. He, B. Hu, Talanta 75, 536 (2008)CrossRefGoogle Scholar
  17. 17.
    R.T. Kachoosangi, R.G. Compton, Sens. Actuators B 178, 555 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Saha, P. Mahato, G.U. Reddy, E. Suresh, A. Chakrabarty, M. Baidya, S.K. Ghosh, A. Das, Inorg. Chem. 51, 336 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Paul, A. Manna, S. Goswami, Dalton Trans. 44, 11805 (2015)CrossRefGoogle Scholar
  20. 20.
    Z.-C. Liao, Z.-Y. Yang, Y. Li, B.-D. Wang, Q.-X. Zhou, Dyes Pigment. 97, 124 (2013)CrossRefGoogle Scholar
  21. 21.
    Y.-W. Liu, C.-H. Chen, A.-T. Wu, Analyst 137, 5201 (2012)CrossRefGoogle Scholar
  22. 22.
    C.-J. Liu, Z.-Y. Yang, L. Fan, X.-L. Jin, J.-M. An, X.-Y. Cheng, B.-D. Wang, J. Lumin. 158, 172 (2015)CrossRefGoogle Scholar
  23. 23.
    M.H. Lee, J.S. Kim, J.L. Sessler, Chem. Soc. Rev. 44, 4185 (2015)CrossRefGoogle Scholar
  24. 24.
    K. Chen, Q.H. Shu, M. Schmittel, Chem. Soc. Rev. 44, 136 (2015)CrossRefGoogle Scholar
  25. 25.
    Z.G. Yang, J.F. Cao, Y.X. He, J.H. Yang, T. Kim, X.J. Peng, J.S. Kim, Chem. Soc. Rev. 43, 4563 (2014)CrossRefGoogle Scholar
  26. 26.
    Y.J. Jang, Y.H. Yeon, H.Y. Yang, J.Y. Noh, I.H. Hwang, C. Kim, Inorg. Chem. Commun. 33, 48 (2013)CrossRefGoogle Scholar
  27. 27.
    Y. Yang, H. Xue, L. Chen, R. Sheng, X. Li, K. Li, Chin. J. Chem. 31, 377 (2013)CrossRefGoogle Scholar
  28. 28.
    P.S. Hariharan, S.P. Anthony, Spectrochim. Acta A 136, 1658 (2015)CrossRefGoogle Scholar
  29. 29.
    R. Kavitha, T. Stalin, J. Lumin. 158, 313 (2015)CrossRefGoogle Scholar
  30. 30.
    Y. Ha, D.P. Murale, C. Yun, S.T. Manjare, H. Kim, J. Kwak, Y.S. Leea, D.G. Churchill, Chem. Commun. 51, 6357 (2015)CrossRefGoogle Scholar
  31. 31.
    C. Kar, M.D. Adhikari, B.K. Datta, A. Ramesh, G. Das, Sens. Actuators B 188, 1132 (2013)CrossRefGoogle Scholar
  32. 32.
    V.K. Gupta, A.K. Singh, L.K. Kumawat, Sens. Actuators B 204, 507 (2014)CrossRefGoogle Scholar
  33. 33.
    M. Hosseini, A. Ghafarloo, M.R. Ganjali, F. Faridbod, P. Norouzi, M.S. Niasari, Sens. Actuators B 198, 411 (2014)CrossRefGoogle Scholar
  34. 34.
    W.H. Hsieh, C.-F. Wan, D.-J. Liao, A.-T. Wu, Tetrahedron Lett. 53, 5848 (2012)CrossRefGoogle Scholar
  35. 35.
    J.-H. Hu, J.-B. Li, J. Qi, Y. Sun, Sens. Actuators B 208, 581 (2015)CrossRefGoogle Scholar
  36. 36.
    J.J. Lee, S.A. Lee, H. Kim, N. LeTuyen, I. Noh, C. Kim, RSC Adv. 5, 41905 (2015)CrossRefGoogle Scholar
  37. 37.
    P.S. Hariharan, S.P. Anthony, Anal. Chim. Acta 848, 74 (2014)CrossRefGoogle Scholar
  38. 38.
    X.-J. Jiang, M. Li, H.-L. Lu, L.-H. Xu, H. Xu, S.-Q. Zang, M.-S. Tang, H.-W. Hou, T.C.W. Mak, Inorg. Chem. 53, 12665 (2014)CrossRefGoogle Scholar
  39. 39.
    C. Kar, S. Samanta, S. Goswami, A. Ramesh, G. Das, Dalton Trans. 44, 4123 (2015)CrossRefGoogle Scholar
  40. 40.
    T. Anand, G. Sivaraman, P. Anandh, D. Chellappa, S. Govindarajan, Tetrahedron Lett. 55, 671 (2014)CrossRefGoogle Scholar
  41. 41.
    K.C. Tayade, A.S. Kuwar, U.A. Fegade, H. Sharma, N. Singh, U.D. Patil, S.B. Attarde, J. Fluoresc. 24, 19 (2014)CrossRefGoogle Scholar
  42. 42.
    J. Wang, S. Chu, F. Kong, L. Luo, Y. Wang, Z. Zou, Sens. Actuators B 150, 25 (2010)CrossRefGoogle Scholar
  43. 43.
    S.-L. Kao, S.-P. Wu, Sens. Actuators B 212, 382 (2015)CrossRefGoogle Scholar
  44. 44.
    K. Kaur, S. Chaudhary, S. Singh, S.K. Mehta, Sci. Adv. Mater. 6, 970 (2014)CrossRefGoogle Scholar
  45. 45.
    J. Ni, B. Li, L. Zhang, H. Zhao, H. Jiang, Sens. Actuators B 215, 174 (2015)CrossRefGoogle Scholar
  46. 46.
    M. Shellaiah, Y.C. Rajan, P. Balu, A. Murugan, New J. Chem. 39, 2523 (2015)CrossRefGoogle Scholar
  47. 47.
    N. Kaur, S. Kaur, R. Mehan, C.A.H. Aguilar, P. Thangarasu, N. Singh, Sens. Actuators B 206, 90 (2015)CrossRefGoogle Scholar
  48. 48.
    P. Saluja, V.K. Bhardwaj, T. Pandiyan, S. Kaur, N. Kaur, N. Singh, RSC Adv. 4, 9784 (2014)CrossRefGoogle Scholar
  49. 49.
    I. Briguglio, S. Piras, P. Corona, E. Gavini, M. Nieddu, G. Boatto, A. Carta, Eur. J. Med. Chem. 97, 612 (2015)CrossRefGoogle Scholar
  50. 50.
    W. Giger, A.C. Alder, E.M. Golet, H.P.E. Kohler, C.S. McArdell, E. Molnar, H. Siegrist, M.J.F. Suter, CHIMA 57, 485 (2003)CrossRefGoogle Scholar
  51. 51.
    M. Yu, W. Du, W. Zhou, H. Li, C. Liu, L. Wei, Z. Li, H. Zhang, Dyes Pigment. 126, 279 (2016)CrossRefGoogle Scholar
  52. 52.
    Z. Zhang, C. Sha, A. Liu, Z. Zhang, D. Xu, J. Fluoresc. 25, 335 (2015)CrossRefGoogle Scholar
  53. 53.
    D. Li, C.-Y. Li, H.-R. Qi, K.-Y. Tan, Y.-F. Li, Sens. Actuators B 223, 705 (2016)CrossRefGoogle Scholar
  54. 54.
    P. Mahato, S. Saha, E. Suresh, R. Di Liddo, P.P. Parnigotto, M.T. Conconi, M.K. Kesharwani, B. Ganguly, A. Das, Inorg. Chem. 51, 1769 (2012)CrossRefGoogle Scholar
  55. 55.
    S. Saha, M.U. Chhatbar, P. Mahato, L. Praveen, A.K. Siddhanta, A. Das, Chem. Commun. 48, 1659 (2012)CrossRefGoogle Scholar
  56. 56.
    R. Patidar, B. Rebary, P. Paul, J. Fluoresc. 25, 387 (2015)CrossRefGoogle Scholar
  57. 57.
    A. Dhara, N. Guchhait, S.K. Kar, J. Fluoresc. 25, 1921 (2015)CrossRefGoogle Scholar
  58. 58.
    D. Liu, T. Pang, K. Ma, W. Jiang, X. Bao, RSC Adv. 4, 2563 (2014)CrossRefGoogle Scholar
  59. 59.
    S. Janakipriya, N.R. Chereddy, P. Korrapati, S. Thennarasu, A.B. Mandal, Spectrochim. Acta A 153, 465 (2016)CrossRefGoogle Scholar
  60. 60.
    P.N. Borase, P.B. Thale, S.K. Sahoo, G.S. Shankarling, Sens. Actuators B. 215, 451 (2015)CrossRefGoogle Scholar
  61. 61.
    S. Erdemir, O. Kocyigit, Talanta 158, 63 (2016)CrossRefGoogle Scholar
  62. 62.
    Y. Xu, W. Yang, J. Shao, W. Zhou, W. Zhu, J. Xie, RSC Adv. 4, 15400 (2014)CrossRefGoogle Scholar
  63. 63.
    M. Li, D. Zhang, Y. Liu, P. Ding, Y. Ye, Y. Zhao, J. Fluoresc. 24, 119 (2014)CrossRefGoogle Scholar
  64. 64.
    D. Zhang, Z. Dong, X. Jiang, M. Feng, W. Li, G. Gao, Anal. Methods 5, 1669 (2013)CrossRefGoogle Scholar
  65. 65.
    Y.-S. Wu, C.-Y. Li, Y.-F. Li, J.-L. Tang, D. Liu, Sens. Actuators B 203, 712 (2014)CrossRefGoogle Scholar
  66. 66.
    A. Singh, S. Kaur, A. Kaur, T. Aree, N. Kaur, N. Singh, M.S. Bakshi, ACS Sustain. Chem. Eng. 2, 982 (2014)CrossRefGoogle Scholar
  67. 67.
    L.-J. Ma, W. Cao, J. Liu, M. Zhang, L. Yang, Sens. Actuators B 181, 782 (2013)CrossRefGoogle Scholar
  68. 68.
    S. Das, A. Sahana, A. Banerjee, S. Lohar, S. Guha, J.S. Matalobos, D. Das, Anal. Methods 4, 2254 (2012)CrossRefGoogle Scholar
  69. 69.
    H. Wu, P. Zhou, J. Wang, L. Zhao, C. Duan, New J. Chem. 33, 653 (2009)CrossRefGoogle Scholar
  70. 70.
    S. Liu, F. Lu, J.-J. Zhu, Chem. Commun. 47, 2661 (2011)CrossRefGoogle Scholar
  71. 71.
    B. Ramachandram, A. Samanta, Chem. Phys. Lett. 290, 9 (1998)CrossRefGoogle Scholar
  72. 72.
    S. Li, L. He, F. Xiong, Y. Li, G. Yang, J. Phys. Chem. B 108, 10887 (2004)CrossRefGoogle Scholar
  73. 73.
    R. Hernández-Molina, A. Mederos, Acyclic and macrocyclic schiff base ligands, in Comprehensive Coordination Chemistry II, ed. by J.A. McCleverty, T.J. Meyer (Elsevier, New York, 2003), p. 411CrossRefGoogle Scholar
  74. 74.
    A. Atahan, S. Durmus, Spectrochim. Acta A 144, 61 (2015)CrossRefGoogle Scholar
  75. 75.
    Y.-J. Chang, P.-J. Hung, C.-F. Wan, A.-T. Wu, Inorg. Chem. Commun. 39, 122 (2014)CrossRefGoogle Scholar
  76. 76.
    J.S. Wu, W.M. Liu, X.Q. Zhuang, F. Wang, P.F. Wang, S.L. Tao, X.H. Zhang, S.K. Wu, S.T. Lee, Org. Lett. 9, 33 (2007)CrossRefGoogle Scholar
  77. 77.
    B.-N. Cao, Q. Hu, Y. Huang, C.-M. Jia, Q. Zhang, Chemi. Res. Chin. Univ. 29, 419 (2013)CrossRefGoogle Scholar
  78. 78.
    C.-H. Chen, P.-J. Hung, C.-F. Wan, A.-T. Wu, Inorg. Chem. Commun. 38, 74 (2013)CrossRefGoogle Scholar
  79. 79.
    C.-H. Chen, D.-J. Liao, C.-F. Wan, A.-T. Wu, Analyst 138, 2527 (2013)CrossRefGoogle Scholar
  80. 80.
    L. Li, F. Liu, H.-W. Li, Spectrochim. Acta A 79, 1688 (2011)CrossRefGoogle Scholar
  81. 81.
    N. Kaur, S. Kaur, A. Kaur, P. Saluja, H. Sharma, A. Saini, N. Dhariwal, A. Singh, N. Singh, J. Lumin. 145, 175 (2014)CrossRefGoogle Scholar
  82. 82.
    V.K. Bhardwaj, H. Sharma, N. Kaur, N. Singh, New J. Chem. 37, 4192 (2013)CrossRefGoogle Scholar
  83. 83.
    V.K. Bhardwaj, H. Sharma, N. Singh, Talanta 129, 198 (2014)CrossRefGoogle Scholar
  84. 84.
    S. Chopra, J. Singh, H. Kaur, H. Singh, N. Singh, N. Kaur, New J. Chem. 39, 3507 (2015)CrossRefGoogle Scholar
  85. 85.
    J. Hou, L.-Y. Wang, D.-H. Li, X. Wu, Tetrahedron Lett. 52, 2710 (2011)CrossRefGoogle Scholar
  86. 86.
    H. Li, H. Yan, J. Phys. Chem. C 113, 7526 (2009)CrossRefGoogle Scholar
  87. 87.
    F. Qu, J.A. Liu, H. Yan, L. Peng, H. Li, Tetrahedron Lett. 49, 7438 (2008)CrossRefGoogle Scholar
  88. 88.
    C.A. Huerta Aguilar, H. Sharma, P. Thangarasu, N. Singh, ChemPlusChem 80, 665 (2015)CrossRefGoogle Scholar
  89. 89.
    H. Sharma, N. Kaur, T. Pandiyan, N. Singh, Sens. Actuators B 166–167, 467 (2012)CrossRefGoogle Scholar
  90. 90.
    V. Bhalla, A. Gupta, M. Kumar, Org. Lett. 14, 3112 (2012)CrossRefGoogle Scholar
  91. 91.
    K.G. Thomas, P.V. Kamat, Acc. Chem. Res. 36, 888 (2003)CrossRefGoogle Scholar
  92. 92.
    M.C. Daniel, D. Astruc, Chem. Rev. 104, 293 (2004)CrossRefGoogle Scholar
  93. 93.
    H.-B. Fu, J.-N. Yao, J. Am. Chem. Soc. 123, 1434 (2001)CrossRefGoogle Scholar
  94. 94.
    S. Chopra, J. Singh, N. Singh, N. Kaur, Anal. Methods 6, 9030 (2014)CrossRefGoogle Scholar
  95. 95.
    B.-K. An, S.-K. Kwon, S.-D. Jung, S.Y. Park, J. Am. Chem. Soc. 124, 14410 (2002)CrossRefGoogle Scholar
  96. 96.
    V.K. Bhardwaj, A.P.S. Pannu, N. Singh, M.S. Hundal, G. Hundal, Tetrahedron 64, 5384 (2008)CrossRefGoogle Scholar
  97. 97.
    N. Jayanthi, J. Cruz, T. Pandiyan, Chem. Phys. Lett. 455, 64 (2008)CrossRefGoogle Scholar
  98. 98.
    J. Autschbach, Comprehen. Inorg. Chem. Element. Appl. 9, 407 (2013)Google Scholar
  99. 99.
    F. Furche, D. Rappoport, Theor. Comput. Chem. 16, 93 (2005)Google Scholar
  100. 100.
    D.R. Lide, CRC Handbook of Chemistry and Physics on CD-ROM (CRC Press, Boca Raton, FL, 2008)Google Scholar
  101. 101.
    D. Jacquemin, E.A. Perpète, G. Scalmani, M.J. Frisch, I. Ciofini, C. Adamo, Chem. Phys. Lett. 421, 272 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de Química, Universidad Nacional Autónoma de México (UNAM)Ciudad UniversitariaCoyoacánMexico
  2. 2.Indian Institute of Technology (IIT)RoparIndia

Personalised recommendations